1: /*
2: PEP routines related to monitors.
4: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5: SLEPc - Scalable Library for Eigenvalue Problem Computations
6: Copyright (c) 2002-2015, Universitat Politecnica de Valencia, Spain
8: This file is part of SLEPc.
10: SLEPc is free software: you can redistribute it and/or modify it under the
11: terms of version 3 of the GNU Lesser General Public License as published by
12: the Free Software Foundation.
14: SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
15: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
16: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
17: more details.
19: You should have received a copy of the GNU Lesser General Public License
20: along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
21: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
22: */
24: #include <slepc/private/pepimpl.h> /*I "slepcpep.h" I*/
25: #include <petscdraw.h>
29: /*
30: Runs the user provided monitor routines, if any.
31: */
32: PetscErrorCode PEPMonitor(PEP pep,PetscInt it,PetscInt nconv,PetscScalar *eigr,PetscScalar *eigi,PetscReal *errest,PetscInt nest) 33: {
35: PetscInt i,n = pep->numbermonitors;
38: for (i=0;i<n;i++) {
39: (*pep->monitor[i])(pep,it,nconv,eigr,eigi,errest,nest,pep->monitorcontext[i]);
40: }
41: return(0);
42: }
46: /*@C
47: PEPMonitorSet - Sets an ADDITIONAL function to be called at every
48: iteration to monitor the error estimates for each requested eigenpair.
50: Logically Collective on PEP 52: Input Parameters:
53: + pep - eigensolver context obtained from PEPCreate()
54: . monitor - pointer to function (if this is NULL, it turns off monitoring)
55: . mctx - [optional] context for private data for the
56: monitor routine (use NULL if no context is desired)
57: - monitordestroy - [optional] routine that frees monitor context (may be NULL)
59: Calling Sequence of monitor:
60: $ monitor (PEP pep, int its, int nconv, PetscScalar *eigr, PetscScalar *eigi, PetscReal* errest, int nest, void *mctx)
62: + pep - polynomial eigensolver context obtained from PEPCreate()
63: . its - iteration number
64: . nconv - number of converged eigenpairs
65: . eigr - real part of the eigenvalues
66: . eigi - imaginary part of the eigenvalues
67: . errest - relative error estimates for each eigenpair
68: . nest - number of error estimates
69: - mctx - optional monitoring context, as set by PEPMonitorSet()
71: Options Database Keys:
72: + -pep_monitor - print only the first error estimate
73: . -pep_monitor_all - print error estimates at each iteration
74: . -pep_monitor_conv - print the eigenvalue approximations only when
75: convergence has been reached
76: . -pep_monitor_lg - sets line graph monitor for the first unconverged
77: approximate eigenvalue
78: . -pep_monitor_lg_all - sets line graph monitor for all unconverged
79: approximate eigenvalues
80: - -pep_monitor_cancel - cancels all monitors that have been hardwired into
81: a code by calls to PEPMonitorSet(), but does not cancel those set via
82: the options database.
84: Notes:
85: Several different monitoring routines may be set by calling
86: PEPMonitorSet() multiple times; all will be called in the
87: order in which they were set.
89: Level: intermediate
91: .seealso: PEPMonitorFirst(), PEPMonitorAll(), PEPMonitorCancel()
92: @*/
93: PetscErrorCode PEPMonitorSet(PEP pep,PetscErrorCode (*monitor)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*),void *mctx,PetscErrorCode (*monitordestroy)(void**)) 94: {
97: if (pep->numbermonitors >= MAXPEPMONITORS) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_OUTOFRANGE,"Too many PEP monitors set");
98: pep->monitor[pep->numbermonitors] = monitor;
99: pep->monitorcontext[pep->numbermonitors] = (void*)mctx;
100: pep->monitordestroy[pep->numbermonitors++] = monitordestroy;
101: return(0);
102: }
106: /*@
107: PEPMonitorCancel - Clears all monitors for a PEP object.
109: Logically Collective on PEP111: Input Parameters:
112: . pep - eigensolver context obtained from PEPCreate()
114: Options Database Key:
115: . -pep_monitor_cancel - Cancels all monitors that have been hardwired
116: into a code by calls to PEPMonitorSet(),
117: but does not cancel those set via the options database.
119: Level: intermediate
121: .seealso: PEPMonitorSet()
122: @*/
123: PetscErrorCode PEPMonitorCancel(PEP pep)124: {
126: PetscInt i;
130: for (i=0; i<pep->numbermonitors; i++) {
131: if (pep->monitordestroy[i]) {
132: (*pep->monitordestroy[i])(&pep->monitorcontext[i]);
133: }
134: }
135: pep->numbermonitors = 0;
136: return(0);
137: }
141: /*@C
142: PEPGetMonitorContext - Gets the monitor context, as set by
143: PEPMonitorSet() for the FIRST monitor only.
145: Not Collective
147: Input Parameter:
148: . pep - eigensolver context obtained from PEPCreate()
150: Output Parameter:
151: . ctx - monitor context
153: Level: intermediate
155: .seealso: PEPMonitorSet(), PEPDefaultMonitor()
156: @*/
157: PetscErrorCode PEPGetMonitorContext(PEP pep,void **ctx)158: {
161: *ctx = pep->monitorcontext[0];
162: return(0);
163: }
167: /*
168: Helper function to compute eigenvalue that must be viewed in monitor
169: */
170: static PetscErrorCode PEPMonitorGetTrueEig(PEP pep,PetscScalar *er,PetscScalar *ei)171: {
173: PetscBool flg;
176: STGetTransform(pep->st,&flg);
177: if (flg) {
178: *er *= pep->sfactor; *ei *= pep->sfactor;
179: }
180: STBackTransform(pep->st,1,er,ei);
181: if (!flg) {
182: *er *= pep->sfactor; *ei *= pep->sfactor;
183: }
184: return(0);
185: }
189: /*@C
190: PEPMonitorAll - Print the current approximate values and
191: error estimates at each iteration of the polynomial eigensolver.
193: Collective on PEP195: Input Parameters:
196: + pep - polynomial eigensolver context
197: . its - iteration number
198: . nconv - number of converged eigenpairs so far
199: . eigr - real part of the eigenvalues
200: . eigi - imaginary part of the eigenvalues
201: . errest - error estimates
202: . nest - number of error estimates to display
203: - monctx - monitor context (contains viewer, can be NULL)
205: Level: intermediate
207: .seealso: PEPMonitorSet(), PEPMonitorFirst(), PEPMonitorConverged()
208: @*/
209: PetscErrorCode PEPMonitorAll(PEP pep,PetscInt its,PetscInt nconv,PetscScalar *eigr,PetscScalar *eigi,PetscReal *errest,PetscInt nest,void *monctx)210: {
212: PetscInt i;
213: PetscScalar er,ei;
214: PetscViewer viewer = monctx? (PetscViewer)monctx: PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)pep));
217: if (its) {
218: PetscViewerASCIIAddTab(viewer,((PetscObject)pep)->tablevel);
219: PetscViewerASCIIPrintf(viewer,"%3D PEP nconv=%D Values (Errors)",its,nconv);
220: for (i=0;i<nest;i++) {
221: er = eigr[i]; ei = eigi[i];
222: PEPMonitorGetTrueEig(pep,&er,&ei);
223: #if defined(PETSC_USE_COMPLEX)
224: PetscViewerASCIIPrintf(viewer," %g%+gi",(double)PetscRealPart(er),(double)PetscImaginaryPart(er));
225: #else
226: PetscViewerASCIIPrintf(viewer," %g",(double)er);
227: if (eigi[i]!=0.0) { PetscViewerASCIIPrintf(viewer,"%+gi",(double)ei); }
228: #endif
229: PetscViewerASCIIPrintf(viewer," (%10.8e)",(double)errest[i]);
230: }
231: PetscViewerASCIIPrintf(viewer,"\n");
232: PetscViewerASCIISubtractTab(viewer,((PetscObject)pep)->tablevel);
233: }
234: return(0);
235: }
239: /*@C
240: PEPMonitorFirst - Print the first unconverged approximate value and
241: error estimate at each iteration of the polynomial eigensolver.
243: Collective on PEP245: Input Parameters:
246: + pep - polynomial eigensolver context
247: . its - iteration number
248: . nconv - number of converged eigenpairs so far
249: . eigr - real part of the eigenvalues
250: . eigi - imaginary part of the eigenvalues
251: . errest - error estimates
252: . nest - number of error estimates to display
253: - monctx - monitor context (contains viewer, can be NULL)
255: Level: intermediate
257: .seealso: PEPMonitorSet(), PEPMonitorAll(), PEPMonitorConverged()
258: @*/
259: PetscErrorCode PEPMonitorFirst(PEP pep,PetscInt its,PetscInt nconv,PetscScalar *eigr,PetscScalar *eigi,PetscReal *errest,PetscInt nest,void *monctx)260: {
262: PetscScalar er,ei;
263: PetscViewer viewer = monctx? (PetscViewer)monctx: PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)pep));
266: if (its && nconv<nest) {
267: PetscViewerASCIIAddTab(viewer,((PetscObject)pep)->tablevel);
268: PetscViewerASCIIPrintf(viewer,"%3D PEP nconv=%D first unconverged value (error)",its,nconv);
269: er = eigr[nconv]; ei = eigi[nconv];
270: PEPMonitorGetTrueEig(pep,&er,&ei);
271: #if defined(PETSC_USE_COMPLEX)
272: PetscViewerASCIIPrintf(viewer," %g%+gi",(double)PetscRealPart(er),(double)PetscImaginaryPart(er));
273: #else
274: PetscViewerASCIIPrintf(viewer," %g",(double)er);
275: if (eigi[nconv]!=0.0) { PetscViewerASCIIPrintf(viewer,"%+gi",(double)ei); }
276: #endif
277: PetscViewerASCIIPrintf(viewer," (%10.8e)\n",(double)errest[nconv]);
278: PetscViewerASCIISubtractTab(viewer,((PetscObject)pep)->tablevel);
279: }
280: return(0);
281: }
285: /*@C
286: PEPMonitorConverged - Print the approximate values and
287: error estimates as they converge.
289: Collective on PEP291: Input Parameters:
292: + pep - polynomial eigensolver context
293: . its - iteration number
294: . nconv - number of converged eigenpairs so far
295: . eigr - real part of the eigenvalues
296: . eigi - imaginary part of the eigenvalues
297: . errest - error estimates
298: . nest - number of error estimates to display
299: - monctx - monitor context
301: Level: intermediate
303: Note:
304: The monitor context must contain a struct with a PetscViewer and a
305: PetscInt. In Fortran, pass a PETSC_NULL_OBJECT.
307: .seealso: PEPMonitorSet(), PEPMonitorFirst(), PEPMonitorAll()
308: @*/
309: PetscErrorCode PEPMonitorConverged(PEP pep,PetscInt its,PetscInt nconv,PetscScalar *eigr,PetscScalar *eigi,PetscReal *errest,PetscInt nest,void *monctx)310: {
311: PetscErrorCode ierr;
312: PetscInt i;
313: PetscScalar er,ei;
314: PetscViewer viewer;
315: SlepcConvMonitor ctx = (SlepcConvMonitor)monctx;
318: if (!monctx) SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_ARG_WRONG,"Must provide a context for PEPMonitorConverged");
319: if (!its) {
320: ctx->oldnconv = 0;
321: } else {
322: viewer = ctx->viewer? ctx->viewer: PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)pep));
323: for (i=ctx->oldnconv;i<nconv;i++) {
324: PetscViewerASCIIAddTab(viewer,((PetscObject)pep)->tablevel);
325: PetscViewerASCIIPrintf(viewer,"%3D PEP converged value (error) #%D",its,i);
326: er = eigr[i]; ei = eigi[i];
327: PEPMonitorGetTrueEig(pep,&er,&ei);
328: #if defined(PETSC_USE_COMPLEX)
329: PetscViewerASCIIPrintf(viewer," %g%+gi",(double)PetscRealPart(er),(double)PetscImaginaryPart(er));
330: #else
331: PetscViewerASCIIPrintf(viewer," %g",(double)er);
332: if (eigi[i]!=0.0) { PetscViewerASCIIPrintf(viewer,"%+gi",(double)ei); }
333: #endif
334: PetscViewerASCIIPrintf(viewer," (%10.8e)\n",(double)errest[i]);
335: PetscViewerASCIISubtractTab(viewer,((PetscObject)pep)->tablevel);
336: }
337: ctx->oldnconv = nconv;
338: }
339: return(0);
340: }
344: PetscErrorCode PEPMonitorLG(PEP pep,PetscInt its,PetscInt nconv,PetscScalar *eigr,PetscScalar *eigi,PetscReal *errest,PetscInt nest,void *monctx)345: {
346: PetscViewer viewer = (PetscViewer)monctx;
347: PetscDraw draw;
348: PetscDrawLG lg;
350: PetscReal x,y;
353: if (!viewer) viewer = PETSC_VIEWER_DRAW_(PetscObjectComm((PetscObject)pep));
354: PetscViewerDrawGetDraw(viewer,0,&draw);
355: PetscViewerDrawGetDrawLG(viewer,0,&lg);
356: if (!its) {
357: PetscDrawSetTitle(draw,"Error estimates");
358: PetscDrawSetDoubleBuffer(draw);
359: PetscDrawLGSetDimension(lg,1);
360: PetscDrawLGReset(lg);
361: PetscDrawLGSetLimits(lg,0,1.0,log10(pep->tol)-2,0.0);
362: }
364: x = (PetscReal)its;
365: if (errest[nconv] > 0.0) y = log10(errest[nconv]); else y = 0.0;
366: PetscDrawLGAddPoint(lg,&x,&y);
368: PetscDrawLGDraw(lg);
369: return(0);
370: }
374: PetscErrorCode PEPMonitorLGAll(PEP pep,PetscInt its,PetscInt nconv,PetscScalar *eigr,PetscScalar *eigi,PetscReal *errest,PetscInt nest,void *monctx)375: {
376: PetscViewer viewer = (PetscViewer)monctx;
377: PetscDraw draw;
378: PetscDrawLG lg;
380: PetscReal *x,*y;
381: PetscInt i,n = PetscMin(pep->nev,255);
384: if (!viewer) viewer = PETSC_VIEWER_DRAW_(PetscObjectComm((PetscObject)pep));
385: PetscViewerDrawGetDraw(viewer,0,&draw);
386: PetscViewerDrawGetDrawLG(viewer,0,&lg);
387: if (!its) {
388: PetscDrawSetTitle(draw,"Error estimates");
389: PetscDrawSetDoubleBuffer(draw);
390: PetscDrawLGSetDimension(lg,n);
391: PetscDrawLGReset(lg);
392: PetscDrawLGSetLimits(lg,0,1.0,log10(pep->tol)-2,0.0);
393: }
395: PetscMalloc2(n,&x,n,&y);
396: for (i=0;i<n;i++) {
397: x[i] = (PetscReal)its;
398: if (i < nest && errest[i] > 0.0) y[i] = log10(errest[i]);
399: else y[i] = 0.0;
400: }
401: PetscDrawLGAddPoint(lg,x,y);
403: PetscDrawLGDraw(lg);
404: PetscFree2(x,y);
405: return(0);
406: }