Actual source code: ex13.c
slepc-3.6.1 2015-09-03
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2015, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
8: SLEPc is free software: you can redistribute it and/or modify it under the
9: terms of version 3 of the GNU Lesser General Public License as published by
10: the Free Software Foundation.
12: SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
13: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15: more details.
17: You should have received a copy of the GNU Lesser General Public License
18: along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
19: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20: */
22: static char help[] = "Generalized Symmetric eigenproblem.\n\n"
23: "The problem is Ax = lambda Bx, with:\n"
24: " A = Laplacian operator in 2-D\n"
25: " B = diagonal matrix with all values equal to 4 except nulldim zeros\n\n"
26: "The command line options are:\n"
27: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
28: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n"
29: " -nulldim <k>, where <k> = dimension of the nullspace of B.\n\n";
31: #include <slepceps.h>
35: int main(int argc,char **argv)
36: {
37: Mat A,B; /* matrices */
38: EPS eps; /* eigenproblem solver context */
39: ST st; /* spectral transformation context */
40: EPSType type;
41: PetscInt N,n=10,m,Istart,Iend,II,nev,i,j,nulldim=0;
42: PetscBool flag,terse;
45: SlepcInitialize(&argc,&argv,(char*)0,help);
47: PetscOptionsGetInt(NULL,"-n",&n,NULL);
48: PetscOptionsGetInt(NULL,"-m",&m,&flag);
49: if (!flag) m=n;
50: N = n*m;
51: PetscOptionsGetInt(NULL,"-nulldim",&nulldim,NULL);
52: PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized Symmetric Eigenproblem, N=%D (%Dx%D grid), null(B)=%D\n\n",N,n,m,nulldim);
54: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
55: Compute the matrices that define the eigensystem, Ax=kBx
56: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
58: MatCreate(PETSC_COMM_WORLD,&A);
59: MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
60: MatSetFromOptions(A);
61: MatSetUp(A);
63: MatCreate(PETSC_COMM_WORLD,&B);
64: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,N,N);
65: MatSetFromOptions(B);
66: MatSetUp(B);
68: MatGetOwnershipRange(A,&Istart,&Iend);
69: for (II=Istart;II<Iend;II++) {
70: i = II/n; j = II-i*n;
71: if (i>0) { MatSetValue(A,II,II-n,-1.0,INSERT_VALUES); }
72: if (i<m-1) { MatSetValue(A,II,II+n,-1.0,INSERT_VALUES); }
73: if (j>0) { MatSetValue(A,II,II-1,-1.0,INSERT_VALUES); }
74: if (j<n-1) { MatSetValue(A,II,II+1,-1.0,INSERT_VALUES); }
75: MatSetValue(A,II,II,4.0,INSERT_VALUES);
76: if (II>=nulldim) { MatSetValue(B,II,II,4.0,INSERT_VALUES); }
77: }
79: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
80: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
81: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
82: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
84: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
85: Create the eigensolver and set various options
86: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
88: /*
89: Create eigensolver context
90: */
91: EPSCreate(PETSC_COMM_WORLD,&eps);
93: /*
94: Set operators. In this case, it is a generalized eigenvalue problem
95: */
96: EPSSetOperators(eps,A,B);
97: EPSSetProblemType(eps,EPS_GHEP);
99: /*
100: Set solver parameters at runtime
101: */
102: EPSSetFromOptions(eps);
104: PetscObjectTypeCompareAny((PetscObject)eps,&flag,EPSBLOPEX,EPSRQCG,"");
105: if (flag) {
106: EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL);
107: } else {
108: /*
109: Select portion of spectrum
110: */
111: EPSSetTarget(eps,0.0);
112: EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE);
113: /*
114: Use shift-and-invert to avoid solving linear systems with a singular B
115: in case nulldim>0
116: */
117: PetscObjectTypeCompareAny((PetscObject)eps,&flag,EPSGD,EPSJD,"");
118: if (!flag) {
119: EPSGetST(eps,&st);
120: STSetType(st,STSINVERT);
121: }
122: }
124: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
125: Solve the eigensystem
126: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
128: EPSSolve(eps);
130: /*
131: Optional: Get some information from the solver and display it
132: */
133: EPSGetType(eps,&type);
134: PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);
135: EPSGetDimensions(eps,&nev,NULL,NULL);
136: PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %D\n",nev);
138: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
139: Display solution and clean up
140: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
142: /* show detailed info unless -terse option is given by user */
143: PetscOptionsHasName(NULL,"-terse",&terse);
144: if (terse) {
145: EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL);
146: } else {
147: PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);
148: EPSReasonView(eps,PETSC_VIEWER_STDOUT_WORLD);
149: EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD);
150: PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);
151: }
152: EPSDestroy(&eps);
153: MatDestroy(&A);
154: MatDestroy(&B);
155: SlepcFinalize();
156: return 0;
157: }