Actual source code: davidson.c
slepc-3.6.1 2015-09-03
1: /*
2: Skeleton of Davidson solver. Actual solvers are GD and JD.
4: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5: SLEPc - Scalable Library for Eigenvalue Problem Computations
6: Copyright (c) 2002-2015, Universitat Politecnica de Valencia, Spain
8: This file is part of SLEPc.
10: SLEPc is free software: you can redistribute it and/or modify it under the
11: terms of version 3 of the GNU Lesser General Public License as published by
12: the Free Software Foundation.
14: SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
15: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
16: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
17: more details.
19: You should have received a copy of the GNU Lesser General Public License
20: along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
21: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
22: */
24: #include davidson.h
26: PetscErrorCode EPSView_XD(EPS eps,PetscViewer viewer);
28: typedef struct {
29: /**** Solver options ****/
30: PetscInt blocksize; /* block size */
31: PetscInt initialsize; /* initial size of V */
32: PetscInt minv; /* size of V after restarting */
33: PetscInt plusk; /* keep plusk eigenvectors from the last iteration */
34: PetscBool ipB; /* true if B-ortho is used */
35: PetscInt method; /* method for improving the approximate solution */
36: PetscReal fix; /* the fix parameter */
37: PetscBool krylovstart; /* true if the starting subspace is a Krylov basis */
38: PetscBool dynamic; /* true if dynamic stopping criterion is used */
39: PetscInt cX_in_proj; /* converged vectors in the projected problem */
40: PetscInt cX_in_impr; /* converged vectors in the projector */
41: Method_t scheme; /* method employed: GD, JD or GD2 */
43: /**** Solver data ****/
44: dvdDashboard ddb;
45: } EPS_DAVIDSON;
49: PetscErrorCode EPSCreate_XD(EPS eps)
50: {
52: EPS_DAVIDSON *data;
55: eps->ops->solve = EPSSolve_XD;
56: eps->ops->setup = EPSSetUp_XD;
57: eps->ops->reset = EPSReset_XD;
58: eps->ops->backtransform = EPSBackTransform_Default;
59: eps->ops->computevectors = EPSComputeVectors_XD;
60: eps->ops->view = EPSView_XD;
62: PetscNewLog(eps,&data);
63: eps->data = (void*)data;
64: PetscMemzero(&data->ddb,sizeof(dvdDashboard));
66: /* Set default values */
67: EPSXDSetKrylovStart_XD(eps,PETSC_FALSE);
68: EPSXDSetBlockSize_XD(eps,1);
69: EPSXDSetRestart_XD(eps,6,0);
70: EPSXDSetInitialSize_XD(eps,5);
71: EPSJDSetFix_JD(eps,0.01);
72: EPSXDSetBOrth_XD(eps,PETSC_TRUE);
73: EPSJDSetConstCorrectionTol_JD(eps,PETSC_TRUE);
74: EPSXDSetWindowSizes_XD(eps,0,0);
75: return(0);
76: }
80: PetscErrorCode EPSSetUp_XD(EPS eps)
81: {
83: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
84: dvdDashboard *dvd = &data->ddb;
85: dvdBlackboard b;
86: PetscInt min_size_V,plusk,bs,initv,i,cX_in_proj,cX_in_impr,nmat;
87: Mat A,B;
88: KSP ksp;
89: PetscBool t,ipB,ispositive,dynamic;
90: HarmType_t harm;
91: InitType_t init;
92: PetscReal fix;
93: PetscScalar target;
96: /* Setup EPS options and get the problem specification */
97: EPSXDGetBlockSize_XD(eps,&bs);
98: if (bs <= 0) bs = 1;
99: if (eps->ncv) {
100: if (eps->ncv<eps->nev) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of ncv must be at least nev");
101: } else if (eps->mpd) eps->ncv = eps->mpd + eps->nev + bs;
102: else if (eps->nev<500) eps->ncv = PetscMin(eps->n-bs,PetscMax(2*eps->nev,eps->nev+15))+bs;
103: else eps->ncv = PetscMin(eps->n-bs,eps->nev+500)+bs;
104: if (!eps->mpd) eps->mpd = eps->ncv;
105: if (eps->mpd > eps->ncv) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The mpd has to be less or equal than ncv");
106: if (eps->mpd < 2) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The mpd has to be greater than 2");
107: if (!eps->max_it) eps->max_it = PetscMax(100*eps->ncv,2*eps->n);
108: if (!eps->which) eps->which = EPS_LARGEST_MAGNITUDE;
109: if (eps->ishermitian && (eps->which==EPS_LARGEST_IMAGINARY || eps->which==EPS_SMALLEST_IMAGINARY)) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Wrong value of eps->which");
110: if (!(eps->nev + bs <= eps->ncv)) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The ncv has to be greater than nev plus blocksize");
111: if (eps->trueres) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"-eps_true_residual is temporally disable in this solver.");
113: EPSXDGetRestart_XD(eps,&min_size_V,&plusk);
114: if (!min_size_V) min_size_V = PetscMin(PetscMax(bs,5),eps->mpd/2);
115: if (!(min_size_V+bs <= eps->mpd)) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of minv must be less than mpd minus blocksize");
116: EPSXDGetInitialSize_XD(eps,&initv);
117: if (eps->mpd < initv) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The initv has to be less or equal than mpd");
119: /* Set STPrecond as the default ST */
120: if (!((PetscObject)eps->st)->type_name) {
121: STSetType(eps->st,STPRECOND);
122: }
123: STPrecondSetKSPHasMat(eps->st,PETSC_FALSE);
125: /* Change the default sigma to inf if necessary */
126: if (eps->which == EPS_LARGEST_MAGNITUDE || eps->which == EPS_LARGEST_REAL || eps->which == EPS_LARGEST_IMAGINARY) {
127: STSetDefaultShift(eps->st,PETSC_MAX_REAL);
128: }
130: /* Davidson solvers only support STPRECOND */
131: STSetUp(eps->st);
132: PetscObjectTypeCompare((PetscObject)eps->st,STPRECOND,&t);
133: if (!t) SETERRQ1(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"%s only works with precond spectral transformation",((PetscObject)eps)->type_name);
135: /* Setup problem specification in dvd */
136: STGetNumMatrices(eps->st,&nmat);
137: STGetOperators(eps->st,0,&A);
138: if (nmat>1) { STGetOperators(eps->st,1,&B); }
139: EPSReset_XD(eps);
140: PetscMemzero(dvd,sizeof(dvdDashboard));
141: dvd->A = A; dvd->B = eps->isgeneralized? B: NULL;
142: ispositive = eps->ispositive;
143: dvd->sA = DVD_MAT_IMPLICIT | (eps->ishermitian? DVD_MAT_HERMITIAN: 0) | ((ispositive && !eps->isgeneralized) ? DVD_MAT_POS_DEF: 0);
144: /* Asume -eps_hermitian means hermitian-definite in generalized problems */
145: if (!ispositive && !eps->isgeneralized && eps->ishermitian) ispositive = PETSC_TRUE;
146: if (!eps->isgeneralized) dvd->sB = DVD_MAT_IMPLICIT | DVD_MAT_HERMITIAN | DVD_MAT_IDENTITY | DVD_MAT_UNITARY | DVD_MAT_POS_DEF;
147: else dvd->sB = DVD_MAT_IMPLICIT | (eps->ishermitian? DVD_MAT_HERMITIAN: 0) | (ispositive? DVD_MAT_POS_DEF: 0);
148: ipB = (dvd->B && data->ipB && DVD_IS(dvd->sB,DVD_MAT_HERMITIAN))?PETSC_TRUE:PETSC_FALSE;
149: if (data->ipB && !ipB) data->ipB = PETSC_FALSE;
150: dvd->correctXnorm = ipB;
151: dvd->sEP = ((!eps->isgeneralized || (eps->isgeneralized && ipB))? DVD_EP_STD: 0) | (ispositive? DVD_EP_HERMITIAN: 0) | ((eps->problem_type == EPS_GHIEP && ipB) ? DVD_EP_INDEFINITE : 0);
152: dvd->nev = eps->nev;
153: dvd->which = eps->which;
154: dvd->withTarget = PETSC_TRUE;
155: switch (eps->which) {
156: case EPS_TARGET_MAGNITUDE:
157: case EPS_TARGET_IMAGINARY:
158: dvd->target[0] = target = eps->target;
159: dvd->target[1] = 1.0;
160: break;
161: case EPS_TARGET_REAL:
162: dvd->target[0] = PetscRealPart(target = eps->target);
163: dvd->target[1] = 1.0;
164: break;
165: case EPS_LARGEST_REAL:
166: case EPS_LARGEST_MAGNITUDE:
167: case EPS_LARGEST_IMAGINARY: /* TODO: think about this case */
168: dvd->target[0] = 1.0;
169: dvd->target[1] = target = 0.0;
170: break;
171: case EPS_SMALLEST_MAGNITUDE:
172: case EPS_SMALLEST_REAL:
173: case EPS_SMALLEST_IMAGINARY: /* TODO: think about this case */
174: dvd->target[0] = target = 0.0;
175: dvd->target[1] = 1.0;
176: break;
177: case EPS_WHICH_USER:
178: STGetShift(eps->st,&target);
179: dvd->target[0] = target;
180: dvd->target[1] = 1.0;
181: break;
182: case EPS_ALL:
183: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported option: which == EPS_ALL");
184: break;
185: default:
186: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported value of option 'which'");
187: }
188: dvd->tol = (eps->tol==PETSC_DEFAULT)? SLEPC_DEFAULT_TOL: eps->tol;
189: dvd->eps = eps;
191: /* Setup the extraction technique */
192: if (!eps->extraction) {
193: if (ipB || ispositive) eps->extraction = EPS_RITZ;
194: else {
195: switch (eps->which) {
196: case EPS_TARGET_REAL:
197: case EPS_TARGET_MAGNITUDE:
198: case EPS_TARGET_IMAGINARY:
199: case EPS_SMALLEST_MAGNITUDE:
200: case EPS_SMALLEST_REAL:
201: case EPS_SMALLEST_IMAGINARY:
202: eps->extraction = EPS_HARMONIC;
203: break;
204: case EPS_LARGEST_REAL:
205: case EPS_LARGEST_MAGNITUDE:
206: case EPS_LARGEST_IMAGINARY:
207: eps->extraction = EPS_HARMONIC_LARGEST;
208: break;
209: default:
210: eps->extraction = EPS_RITZ;
211: }
212: }
213: }
214: switch (eps->extraction) {
215: case EPS_RITZ: harm = DVD_HARM_NONE; break;
216: case EPS_HARMONIC: harm = DVD_HARM_RR; break;
217: case EPS_HARMONIC_RELATIVE: harm = DVD_HARM_RRR; break;
218: case EPS_HARMONIC_RIGHT: harm = DVD_HARM_REIGS; break;
219: case EPS_HARMONIC_LARGEST: harm = DVD_HARM_LEIGS; break;
220: default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported extraction type");
221: }
223: /* Setup the type of starting subspace */
224: EPSXDGetKrylovStart_XD(eps,&t);
225: init = (!t)? DVD_INITV_CLASSIC : DVD_INITV_KRYLOV;
227: /* Setup the presence of converged vectors in the projected problem and the projector */
228: EPSXDGetWindowSizes_XD(eps,&cX_in_impr,&cX_in_proj);
229: if (cX_in_impr>0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The option pwindow is temporally disable in this solver.");
230: if (cX_in_proj>0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The option qwindow is temporally disable in this solver.");
231: if (min_size_V <= cX_in_proj) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"minv has to be greater than qwindow");
232: if (bs > 1 && cX_in_impr > 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported option: pwindow > 0 and bs > 1");
234: /* Get the fix parameter */
235: EPSXDGetFix_XD(eps,&fix);
237: /* Get whether the stopping criterion is used */
238: EPSJDGetConstCorrectionTol_JD(eps,&dynamic);
240: /* Preconfigure dvd */
241: STGetKSP(eps->st,&ksp);
242: dvd_schm_basic_preconf(dvd,&b,eps->mpd,min_size_V,bs,initv,PetscAbs(eps->nini),plusk,harm,ksp,init,eps->trackall,data->ipB,cX_in_proj,cX_in_impr,data->scheme);
244: /* Allocate memory */
245: EPSAllocateSolution(eps,0);
247: /* Setup orthogonalization */
248: EPS_SetInnerProduct(eps);
249: if (!(ipB && dvd->B)) {
250: BVSetMatrix(eps->V,NULL,PETSC_FALSE);
251: }
253: for (i=0;i<eps->ncv;i++) eps->perm[i] = i;
255: /* Configure dvd for a basic GD */
256: dvd_schm_basic_conf(dvd,&b,eps->mpd,min_size_V,bs,initv,PetscAbs(eps->nini),plusk,harm,dvd->withTarget,target,ksp,fix,init,eps->trackall,data->ipB,cX_in_proj,cX_in_impr,dynamic,data->scheme);
257: return(0);
258: }
262: PetscErrorCode EPSSolve_XD(EPS eps)
263: {
264: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
265: dvdDashboard *d = &data->ddb;
266: PetscInt l,k;
270: /* Call the starting routines */
271: EPSDavidsonFLCall(d->startList,d);
273: for (eps->its=0;eps->its<eps->max_it;eps->its++) {
274: /* Initialize V, if it is needed */
275: BVGetActiveColumns(d->eps->V,&l,&k);
276: if (l == k) { d->initV(d); }
278: /* Find the best approximated eigenpairs in V, X */
279: d->calcPairs(d);
281: /* Test for convergence */
282: if (eps->nconv >= eps->nev) break;
284: /* Expand the subspace */
285: d->updateV(d);
287: /* Monitor progress */
288: eps->nconv = d->nconv;
289: BVGetActiveColumns(d->eps->V,&l,&k);
290: EPSMonitor(eps,eps->its+1,eps->nconv,eps->eigr,eps->eigi,eps->errest,k);
291: }
293: /* Call the ending routines */
294: EPSDavidsonFLCall(d->endList,d);
296: if (eps->nconv >= eps->nev) eps->reason = EPS_CONVERGED_TOL;
297: else eps->reason = EPS_DIVERGED_ITS;
298: return(0);
299: }
303: PetscErrorCode EPSReset_XD(EPS eps)
304: {
305: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
306: dvdDashboard *dvd = &data->ddb;
310: /* Call step destructors and destroys the list */
311: EPSDavidsonFLCall(dvd->destroyList,dvd);
312: EPSDavidsonFLDestroy(&dvd->destroyList);
313: EPSDavidsonFLDestroy(&dvd->startList);
314: EPSDavidsonFLDestroy(&dvd->endList);
315: return(0);
316: }
320: PetscErrorCode EPSView_XD(EPS eps,PetscViewer viewer)
321: {
323: PetscBool isascii,opb;
324: PetscInt opi,opi0;
325: Method_t meth;
326: PetscBool borth;
329: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
330: if (isascii) {
331: EPSXDGetMethod_XD(eps,&meth);
332: if (meth==DVD_METH_GD2) {
333: PetscViewerASCIIPrintf(viewer," Davidson: using double expansion variant (GD2)\n");
334: }
335: EPSXDGetBOrth_XD(eps,&borth);
336: if (borth) {
337: PetscViewerASCIIPrintf(viewer," Davidson: search subspace is B-orthogonalized\n");
338: } else {
339: PetscViewerASCIIPrintf(viewer," Davidson: search subspace is orthogonalized\n");
340: }
341: EPSXDGetBlockSize_XD(eps,&opi);
342: PetscViewerASCIIPrintf(viewer," Davidson: block size=%D\n",opi);
343: EPSXDGetKrylovStart_XD(eps,&opb);
344: if (!opb) {
345: PetscViewerASCIIPrintf(viewer," Davidson: type of the initial subspace: non-Krylov\n");
346: } else {
347: PetscViewerASCIIPrintf(viewer," Davidson: type of the initial subspace: Krylov\n");
348: }
349: EPSXDGetRestart_XD(eps,&opi,&opi0);
350: PetscViewerASCIIPrintf(viewer," Davidson: size of the subspace after restarting: %D\n",opi);
351: PetscViewerASCIIPrintf(viewer," Davidson: number of vectors after restarting from the previous iteration: %D\n",opi0);
352: }
353: return(0);
354: }
358: PetscErrorCode EPSXDSetKrylovStart_XD(EPS eps,PetscBool krylovstart)
359: {
360: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
363: data->krylovstart = krylovstart;
364: return(0);
365: }
369: PetscErrorCode EPSXDGetKrylovStart_XD(EPS eps,PetscBool *krylovstart)
370: {
371: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
374: *krylovstart = data->krylovstart;
375: return(0);
376: }
380: PetscErrorCode EPSXDSetBlockSize_XD(EPS eps,PetscInt blocksize)
381: {
382: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
385: if (blocksize == PETSC_DEFAULT || blocksize == PETSC_DECIDE) blocksize = 1;
386: if (blocksize <= 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid blocksize value");
387: data->blocksize = blocksize;
388: return(0);
389: }
393: PetscErrorCode EPSXDGetBlockSize_XD(EPS eps,PetscInt *blocksize)
394: {
395: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
398: *blocksize = data->blocksize;
399: return(0);
400: }
404: PetscErrorCode EPSXDSetRestart_XD(EPS eps,PetscInt minv,PetscInt plusk)
405: {
406: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
409: if (minv == PETSC_DEFAULT || minv == PETSC_DECIDE) minv = 5;
410: if (minv <= 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid minv value");
411: if (plusk == PETSC_DEFAULT || plusk == PETSC_DECIDE) plusk = 5;
412: if (plusk < 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid plusk value");
413: data->minv = minv;
414: data->plusk = plusk;
415: return(0);
416: }
420: PetscErrorCode EPSXDGetRestart_XD(EPS eps,PetscInt *minv,PetscInt *plusk)
421: {
422: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
425: if (minv) *minv = data->minv;
426: if (plusk) *plusk = data->plusk;
427: return(0);
428: }
432: PetscErrorCode EPSXDGetInitialSize_XD(EPS eps,PetscInt *initialsize)
433: {
434: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
437: *initialsize = data->initialsize;
438: return(0);
439: }
443: PetscErrorCode EPSXDSetInitialSize_XD(EPS eps,PetscInt initialsize)
444: {
445: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
448: if (initialsize == PETSC_DEFAULT || initialsize == PETSC_DECIDE) initialsize = 5;
449: if (initialsize <= 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid initial size value");
450: data->initialsize = initialsize;
451: return(0);
452: }
456: PetscErrorCode EPSXDGetFix_XD(EPS eps,PetscReal *fix)
457: {
458: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
461: *fix = data->fix;
462: return(0);
463: }
467: PetscErrorCode EPSJDSetFix_JD(EPS eps,PetscReal fix)
468: {
469: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
472: if (fix == PETSC_DEFAULT || fix == PETSC_DECIDE) fix = 0.01;
473: if (fix < 0.0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid fix value");
474: data->fix = fix;
475: return(0);
476: }
480: PetscErrorCode EPSXDSetBOrth_XD(EPS eps,PetscBool borth)
481: {
482: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
485: data->ipB = borth;
486: return(0);
487: }
491: PetscErrorCode EPSXDGetBOrth_XD(EPS eps,PetscBool *borth)
492: {
493: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
496: *borth = data->ipB;
497: return(0);
498: }
502: PetscErrorCode EPSJDSetConstCorrectionTol_JD(EPS eps,PetscBool constant)
503: {
504: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
507: data->dynamic = (!constant)? PETSC_TRUE: PETSC_FALSE;
508: return(0);
509: }
513: PetscErrorCode EPSJDGetConstCorrectionTol_JD(EPS eps,PetscBool *constant)
514: {
515: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
518: *constant = (!data->dynamic)? PETSC_TRUE: PETSC_FALSE;
519: return(0);
520: }
524: PetscErrorCode EPSXDSetWindowSizes_XD(EPS eps,PetscInt pwindow,PetscInt qwindow)
525: {
526: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
529: if (pwindow == PETSC_DEFAULT || pwindow == PETSC_DECIDE) pwindow = 0;
530: if (pwindow < 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid pwindow value");
531: if (qwindow == PETSC_DEFAULT || qwindow == PETSC_DECIDE) qwindow = 0;
532: if (qwindow < 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid qwindow value");
533: data->cX_in_proj = qwindow;
534: data->cX_in_impr = pwindow;
535: return(0);
536: }
540: PetscErrorCode EPSXDGetWindowSizes_XD(EPS eps,PetscInt *pwindow,PetscInt *qwindow)
541: {
542: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
545: if (pwindow) *pwindow = data->cX_in_impr;
546: if (qwindow) *qwindow = data->cX_in_proj;
547: return(0);
548: }
552: PetscErrorCode EPSXDSetMethod(EPS eps,Method_t method)
553: {
554: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
557: data->scheme = method;
558: return(0);
559: }
563: PetscErrorCode EPSXDGetMethod_XD(EPS eps,Method_t *method)
564: {
565: EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;
568: *method = data->scheme;
569: return(0);
570: }
574: /*
575: EPSComputeVectors_XD - Compute eigenvectors from the vectors
576: provided by the eigensolver. This version is intended for solvers
577: that provide Schur vectors from the QZ decomposition. Given the partial
578: Schur decomposition OP*V=V*T, the following steps are performed:
579: 1) compute eigenvectors of (S,T): S*Z=T*Z*D
580: 2) compute eigenvectors of OP: X=V*Z
581: */
582: PetscErrorCode EPSComputeVectors_XD(EPS eps)
583: {
585: Mat X;
586: PetscBool symm;
589: PetscObjectTypeCompareAny((PetscObject)eps->ds,&symm,DSHEP,"");
590: if (symm) return(0);
591: DSVectors(eps->ds,DS_MAT_X,NULL,NULL);
592: DSNormalize(eps->ds,DS_MAT_X,-1);
594: /* V <- V * X */
595: DSGetMat(eps->ds,DS_MAT_X,&X);
596: BVSetActiveColumns(eps->V,0,eps->nconv);
597: BVMultInPlace(eps->V,X,0,eps->nconv);
598: DSRestoreMat(eps->ds,DS_MAT_X,&X);
599: return(0);
600: }