
Package ‘sensitivity’
September 2, 2018

Version 1.15.2

Title Global Sensitivity Analysis of Model Outputs

Author Bertrand Iooss, Alexandre Janon and Gilles Pujol, with contribu-
tions from Khalid Boumhaout, Sebastien Da Veiga, Thibault Delage, Jana Fruth, Lau-
rent Gilquin, Joseph Guillaume, Loic Le Gratiet, Paul Lemaitre, Barry L. Nelson, Fil-
ippo Monari, Roelof Oomen, Oldrich Rakovec, Bernardo Ramos, Olivier Roustant, Eun-
hye Song, Jeremy Staum, Roman Sueur, Taieb Touati, Frank Weber

Maintainer Bertrand Iooss <biooss@yahoo.fr>

Depends R (>= 3.0.0)

Imports boot, methods

Suggests condMVNorm, DiceDesign, DiceKriging, evd, fanovaGraph,
ggplot2, ggExtra, gtools, igraph, ks, mc2d, mvtnorm, numbers,
parallel, pracma, randtoolbox, reshape2, rgl, triangle

Description A collection of functions for factor screening, global sensitivity analysis and reliabil-
ity sensitivity analysis. Most of the functions have to be applied on model with scalar out-
put, but several functions support multi-dimensional outputs.

License GPL-2

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-09-02 15:20:04 UTC

R topics documented:
sensitivity-package . 2
decoupling . 5
delsa . 6
fast99 . 8
morris . 10
morrisMultOut . 14
parameterSets . 16
pcc . 18
PLI . 19

1

2 sensitivity-package

PLIquantile . 22
plot.support . 24
PoincareConstant . 26
PoincareOptimal . 29
sb . 31
sensiFdiv . 33
sensiHSIC . 35
shapleyPermEx . 38
shapleyPermRand . 41
sobol . 47
sobol2002 . 49
sobol2007 . 51
sobolEff . 53
sobolGP . 55
soboljansen . 59
sobolmara . 62
sobolmartinez . 63
sobolMultOut . 66
sobolowen . 68
sobolroalhs . 71
sobolroauc . 74
sobolSalt . 76
sobolSmthSpl . 78
sobolTIIlo . 79
sobolTIIpf . 81
soboltouati . 83
src . 85
support . 87
template.replace . 89
testmodels . 90
truncateddistrib . 92

Index 94

sensitivity-package Sensitivity Analysis

Description

Methods and functions for global sensitivity analysis.

Details

The sensitivity package implements some global sensitivity analysis methods:

• Linear regression coefficients: SRC and SRRC (src), PCC and PRCC (pcc);

• Bettonvil’s sequential bifurcations (Bettonvil and Kleijnen, 1996) (sb);

• Morris’s "OAT" elementary effects screening method (morris);

sensitivity-package 3

• Derivative-based Global Sensitivity Measures:

– Poincare constants for Derivative-based Global Sensitivity Measures (DGSM) (Lamboni
et al., 2013; Roustant et al., 2017) (PoincareConstant) and (PoincareOptimal),

– Distributed Evaluation of Local Sensitivity Analysis (DELSA) (Rakovec et al., 2014)
(delsa);

• Variance-based sensitivity indices (Sobol’ indices):

– Estimation of the Sobol’ first order indices with with B-spline Smoothing (Ratto and
Pagano, 2010) (sobolSmthSpl),

– Monte Carlo estimation of Sobol’ indices with independent inputs (also called pick-freeze
method):

* Sobol’ scheme (Sobol, 1993) to compute the indices given by the variance decompo-
sition up to a specified order (sobol),

* Saltelli’s scheme (Saltelli, 2002) to compute first order, second order and total indices
(sobolSalt),

* Saltelli’s scheme (Saltelli, 2002) to compute first order and total indices (sobol2002),

* Mauntz-Kucherenko’s scheme (Sobol et al., 2007) to compute first order and total
indices using improved formulas for small indices (sobol2007),

* Jansen-Sobol’s scheme (Jansen, 1999) to compute first order and total indices using
improved formulas (soboljansen),

* Martinez’s scheme using correlation coefficient-based formulas (Martinez, 2011; Touati,
2016) to compute first order and total indices, associated with theoretical confidence
intervals (sobolmartinez and soboltouati),

* Janon-Monod’s scheme (Monod et al., 2006; Janon et al., 2013) to compute first
order indices with optimal asymptotic variance (sobolEff),

* Mara’s scheme (Mara and Joseph, 2008) to compute first order indices with a cost
independent of the dimension, via a unique-matrix permutations (sobolmara),

* Owen’s scheme (Owen, 2013) to compute first order and total indices using improved
formulas (via 3 input independent matrices) for small indices (sobolowen),

* Total Interaction Indices using Liu-Owen’s scheme (Liu and Owen, 2006) (sobolTIIlo)
and pick-freeze scheme (Fruth et al., 2014) (sobolTIIpf),

– Estimation of the Sobol’ first order and total indices with Saltelli’s so-called "extended-
FAST" method (Saltelli et al., 1999) (fast99),

– Estimation of the Sobol’ first order and closed second order indices using replicated or-
thogonal array-based Latin hypecube sample (Tissot and Prieur, 2015) (sobolroalhs),

– Sobol’ indices estimation under inequality constraints (Gilquin et al., 2015) by extension
of the replication procedure (Tissot and Prieur, 2015) (sobolroauc),

– Estimation of the Sobol’ first order and total indices with kriging-based global sensitivity
analysis (Le Gratiet et al., 2014) (sobolGP);

• Variance-based sensitivity indices (Shapley effects and Sobol’ indices, with independent or
dependent inputs):

– Estimation by examining all permutations of inputs (Song et al., 2016) (shapleyPermEx)
– Estimation by randomly sampling permutations of inputs (Song et al., 2016) (shapleyPermRand)

• Support index functions (support) of Fruth et al. (2016);

4 sensitivity-package

• Sensitivity Indices based on Csiszar f-divergence (sensiFdiv) (particular cases: Borgonovo’s
indices and mutual-information based indices) and Hilbert-Schmidt Independence Criterion
(sensiHSIC) of Da Veiga (2015);

• Reliability sensitivity analysis by the Perturbed-Law based Indices (PLI) of Lemaitre et al.
(2015) and (PLIquantile) of Sueur et al. (2017);

• Extensions to multidimensional outputs for:

– Sobol’ indices (sobolMultOut): Aggregated Sobol’ indices (Lamboni et al., 2011; Gam-
boa et al., 2014) and functional (1D) Sobol’ indices;

– Morris method (morrisMultOut).

Moreover, some utilities are provided: standard test-cases (testmodels), normal and Gumbel trun-
cated distributions (truncateddistrib) and template file generation (template.replace).

Model managing

The sensitivity package has been designed to work either models written in R than external models
such as heavy computational codes. This is achieved with the input argument model present in all
functions of this package.

The argument model is expected to be either a funtion or a predictor (i.e. an object with a predict
function such as lm).

• If model = m where m is a function, it will be invoked once by y <- m(X).

• If model = m where m is a predictor, it will be invoked once by y <- predict(m, X).

X is the design of experiments, i.e. a data.frame with p columns (the input factors) and n lines
(each, an experiment), and y is the vector of length n of the model responses.

The model in invoked once for the whole design of experiment.

The argument model can be left to NULL. This is refered to as the decoupled approach and used with
external computational codes that rarely run on the statistician’s computer. See decoupling.

Author(s)

Bertrand Iooss, Alexandre Janon and Gilles Pujol with contributions from Paul Lemaitre for the
PLI function, Thibault Delage and Roman Sueur for the PLIquantile function, Laurent Gilquin
for the sobolroalhs, sobolroauc and sobolSalt functions, Loic le Gratiet for the sobolGP func-
tion, Khalid Boumhaout, Taieb Touati and Bernardo Ramos for the sobolowen and soboltouati
functions, Jana Fruth for the PoincareConstant, sobolTIIlo and sobolTIIpf functions, Se-
bastien Da veiga for the sensiFdiv and sensiHSIC functions, Joseph Guillaume and Oldrich
Rakovec for the delsa and parameterSets functions, Olivier Roustant for the PoincareOptimal
and support functions, Eunhye Song, Barry L. Nelson and Jeremy Staum for the shapleyPermEx
and shapleyPermRand functions, Filippo Monari for the (sobolSmthSpl) and (morrisMultOut)
functions, Frank Weber and Roelof Oomen.

(maintainer: Bertrand Iooss <biooss@yahoo.fr>)

decoupling 5

References

R. Faivre, B. Iooss, S. Mahevas, D. Makowski, H. Monod, editors, 2013, Analyse de sensibilite et
exploration de modeles. Applications aux modeles environnementaux, Editions Quae.

B. Iooss and A. Saltelli, 2017, Introduction: Sensitivity analysis. In: Springer Handbook on Uncer-
tainty Quantification, R. Ghanem, D. Higdon and H. Owhadi (Eds), Springer. hrefhttp://link.springer.com/referenceworkentry/10.1007/978-
3-319-11259-6_31-1

B. Iooss and P. Lemaitre, 2015, A review on global sensitivity analysis methods. In Uncertainty
management in Simulation-Optimization of Complex Systems: Algorithms and Applications, C.
Meloni and G. Dellino (eds), Springer. https://hal.archives-ouvertes.fr/hal-00975701

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

A. Saltelli et al., 2008, Global Sensitivity Analysis: The Primer, Wiley

decoupling Decoupling Simulations and Estimations

Description

tell and ask are S3 generic methods for decoupling simulations and sensitivity measures estima-
tions. In general, they are not used by the end-user for a simple R model, but rather for an external
computational code. Most of the sensitivity analyses objects of this package overload tell, whereas
ask is overloaded for iterative methods only.

Usage

tell(x, y = NULL, ...)
ask(x, ...)

Arguments

x a typed list storing the state of the sensitivity study (parameters, data, estimates),
as returned by sensitivity analyses objects constructors, such as src, morris,
etc.

y a vector of model responses.

... additional arguments, depending on the method used.

Details

When a sensitivity analysis method is called with no model (i.e. argument model = NULL), it
generates an incomplete object x that stores the design of experiments (field X), allowing the user to
launch "by hand" the corresponding simulations. The method tell allows to pass these simulation
results to the incomplete object x, thereafter estimating the sensitivity measures.

When the method is iterative, the data to simulate are not stored in the sensitivity analysis object x,
but generated at each iteration with the ask method; see for example sb.

https://hal.archives-ouvertes.fr/hal-00975701

6 delsa

Value

tell doesn’t return anything. It computes the sensitivity measures, and stores them in the list x.
Side effect: tell modifies its argument x.

ask returns the set of data to simulate.

Author(s)

Gilles Pujol

Examples

Example of use of fast99 with "model = NULL"
x <- fast99(model = NULL, factors = 3, n = 1000,

q = "qunif", q.arg = list(min = -pi, max = pi))
y <- ishigami.fun(x$X)
tell(x, y)
print(x)
plot(x)

delsa Distributed Evaluation of Local Sensitivity Analysis

Description

delsa implements Distributed Evaluation of Local Sensitivity Analysis to calculate first order pa-
rameter sensitivity at multiple locations in parameter space. The locations in parameter space can
either be obtained by a call to parameterSets or by specifying X0 directly, in which case the prior
variance of each parameter varprior also needs to be specified. Via plot (which uses functions of
the package ggplot2 and reshape2), the indices can be visualized.

Usage

delsa(model = NULL, perturb=1.01,
par.ranges, samples, method,
X0, varprior,
...)

S3 method for class 'delsa'
tell(x, y = NULL,...)

S3 method for class 'delsa'
print(x, ...)

S3 method for class 'delsa'
plot(x, which=1:3, ask = dev.interactive(), ...)

delsa 7

Arguments

model a function, or a model with a predict method, defining the model to analyze.

perturb Perturbation used to calculate sensitivity at each evaluation location

par.ranges A named list of minimum and maximum parameter values

samples Number of samples to generate. For the "grid" and "innergrid"method, cor-
responds to the number of samples for each parameter, and may be a vector.

method Sampling scheme. See parameterSets

X0 Parameter values at which to evaluate sensitivity indices. Can be used instead of
specifying sampling method

varprior Prior variance. If X0 is specified, varprior must also be specified.

... any other arguments for model which are passed unchanged each time it is
called.

x a list of class "delsa" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

which if a subset of the plots is required, specify a subset of the numbers 1:3

ask logical; if TRUE, the user is asked before each plot, see par(ask=.)

Details

print shows summary of the first order indices across parameter space.

plot shows: (1) the cumulative distribution function of first order sensitivity across parameter
space, (2) variation of first order sensitivity in relation to model response, and (3) sensitivity in
relation to parameter value.

Value

delsa returns a list of class "delsa", containing all the input arguments detailed before, plus the
following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

delsafirst the first order indices for each location in X0

Author(s)

Conversion for sensitivity package by Joseph Guillaume, based on original R code by Oldrich
Rakovec

References

Rakovec, O., M. C. Hill, M. P. Clark, A. H. Weerts, A. J. Teuling, R. Uijlenhoet (2014), Distributed
Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models, Water
Resour. Res., 50, 1-18

8 fast99

See Also

parameterSets which is used to generate points, sensitivity for other methods in the package

Examples

Test case : the non-monotonic Sobol g-function
(there are 8 factors, all following the uniform distribution on [0,1])

library(randtoolbox)
x <- delsa(model=sobol.fun,

par.ranges=replicate(8,c(0,1),simplify=FALSE),
samples=100,method="sobol")

Summary of sensitivity indices of each parameter across parameter space
print(x)

library(ggplot2)
library(reshape2)
x11()
plot(x)

fast99 Extended Fourier Amplitude Sensitivity Test

Description

fast99 implements the so-called "extended-FAST" method (Saltelli et al. 1999). This method
allows the estimation of first order and total Sobol’ indices for all the factors (alltogether 2p indices,
where p is the number of factors) at a total cost of n× p simulations.

Usage

fast99(model = NULL, factors, n, M = 4, omega = NULL,
q = NULL, q.arg = NULL, ...)

S3 method for class 'fast99'
tell(x, y = NULL, ...)
S3 method for class 'fast99'
print(x, ...)
S3 method for class 'fast99'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

fast99 9

n an integer giving the sample size, i.e. the length of the discretization of the
s-space (see Cukier et al.).

M an integer specifying the interference parameter, i.e. the number of harmonics
to sum in the Fourier series decomposition (see Cukier et al.).

omega a vector giving the set of frequencies, one frequency for each factor (see details
below).

q a vector of quantile functions names corresponding to wanted factors distribu-
tions (see details below).

q.arg a list of quantile functions parameters (see details below).

x a list of class "fast99" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Details

If not given, the set of frequencies omega is taken from Saltelli et al. The first frequency of the vector
omega is assigned to each factor Xi in turn (corresponding to the estimation of Sobol’ indices Si

and STi), other frequencies being assigned to the remaining factors.

If the arguments q and q.args are not given, the factors are taken uniformly distributed on [0, 1].
The argument q must be list of character strings, giving the names of the quantile functions (one
for each factor), such as qunif, qnorm. . . It can also be a single character string, meaning same
distribution for all. The argument q.arg must be a list of lists, each one being additional parameters
for the corresponding quantile function. For example, the parameters of the quantile function qunif
could be list(min=1, max=2), giving an uniform distribution on [1, 2]. If q is a single character
string, then q.arg must be a single list (rather than a list of one list).

Value

fast99 returns a list of class "fast99", containing all the input arguments detailed before, plus the
following components:

call the matched call.

X a data.frame containing the factors sample values.

y a vector of model responses.

V the estimation of variance.

D1 the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor.

Dt the estimations of VCE with respect to each factor complementary set of factors
("all but Xi").

Author(s)

Gilles Pujol

10 morris

References

A. Saltelli, S. Tarantola and K. Chan, 1999, A quantitative, model independent method for global
sensitivity analysis of model output, Technometrics, 41, 39–56.

R. I. Cukier, H. B. Levine and K. E. Schuler, 1978, Nonlinear sensitivity analysis of multiparameter
model systems. J. Comput. Phys., 26, 1–42.

Examples

Test case : the non-monotonic Ishigami function
x <- fast99(model = ishigami.fun, factors = 3, n = 1000,

q = "qunif", q.arg = list(min = -pi, max = pi))
print(x)
plot(x)

morris Morris’s Elementary Effects Screening Method

Description

morris implements the Morris’s elementary effects screening method (Morris 1991). This method,
based on design of experiments, allows to identify the few important factors at a cost of r× (p+1)
simulations (where p is the number of factors). This implementation includes some improvements
of the original method: space-filling optimization of the design (Campolongo et al. 2007) and
simplex-based design (Pujol 2009).

Usage

morris(model = NULL, factors, r, design, binf = 0, bsup = 1,
scale = TRUE, ...)

S3 method for class 'morris'
tell(x, y = NULL, ...)
S3 method for class 'morris'
print(x, ...)
S3 method for class 'morris'
plot(x, identify = FALSE, atpen = FALSE, y_col = NULL,
y_dim3 = NULL, ...)

S3 method for class 'morris'
plot3d(x, alpha = c(0.2, 0), sphere.size = 1, y_col = NULL,
y_dim3 = NULL)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

morris 11

r either an integer giving the number of repetitions of the design, i.e. the number
of elementary effect computed per factor, or a vector of two integers c(r1, r2)
for the space-filling improvement (Campolongo et al. 2007). In this case, r1 is
the wanted design size, and r2 (> r1) is the size of the (bigger) population in
which is extracted the design (this can throw a warning, see below).

design a list specifying the design type and its parameters:
• type = "oat" for Morris’s OAT design (Morris 1991), with the parameters:

– levels : either an integer specifying the number of levels of the design,
or a vector of integers for different values for each factor.

– grid.jump : either an integer specifying the number of levels that are
increased/decreased for computing the elementary effects, or a vector
of integers for different values for each factor. If not given, it is set to
grid.jump = 1. Notice that this default value of one does not follow
Morris’s recommendation of levels/2.

• type = "simplex" for simplex-based design (Pujol 2009), with the pa-
rameter:

– scale.factor : a numeric value, the homothety factor of the (isomet-
ric) simplexes. Edges equal one with a scale factor of one.

binf either an integer, specifying the minimum value for the factors, or a vector for
different values for each factor.

bsup either an integer, specifying the maximum value for the factors, or a vector for
different values for each factor.

scale logical. If TRUE, the input design of experiments is scaled after building the de-
sign and before computing the elementary effects so that all factors vary within
the range [0,1]. For each factor, the scaling is done relatively to its correspond-
ing bsup and binf.

x a list of class "morris" storing the state of the screening study (parameters,
data, estimates).

y a vector of model responses.
identify logical. If TRUE, the user selects with the mouse the factors to label on the

(µ∗, σ) graph (see identify).
atpen logical. If TRUE (and identify = TRUE), the user-identified labels (more pre-

cisely: their lower-left corners) of the factors are plotted at the place where the
user had clicked (if near enough to one of the factor points). If FALSE (and
identify = TRUE), the labels are automatically adjusted to the lower, left, up-
per or right side of the factor point. For further information, see identify.
Defaults to FALSE.

y_col an integer defining the index of the column of x$y to be used for plotting the
corresponding Morris statistics µ∗ and σ (only applies if x$y is a matrix or an
array). If set to NULL (as per default) and x$y is a matrix or an array, the first
column (respectively the first element in the second dimension) of x$y is used
(i.e. y_col = 1).

y_dim3 an integer defining the index in the third dimension of x$y to be used for plotting
the corresponding Morris statistics µ∗ and σ (only applies if x$y is an array). If
set to NULL (as per default) and x$y is a three-dimensional array, the first element
in the third dimension of x$y is used (i.e. y_dim3 = 1).

12 morris

alpha a vector of three values between 0.0 (fully transparent) and 1.0 (opaque) (see
rgl.material). The first value is for the cone, the second for the planes.

sphere.size a numeric value, the scale factor for displaying the spheres.

... for morris: any other arguments for model which are passed unchanged each
time it is called. For plot.morris: arguments to be passed to plot.default.

Details

plot.morris draws the (µ∗, σ) graph.

plot3d.morris draws the (µ, µ∗, σ) graph (requires the rgl package). On this graph, the points are
in a domain bounded by a cone and two planes (application of the Cauchy-Schwarz inequality).

When using the space-filling improvement (Campolongo et al. 2007) of the Morris design, we
recommend to install before the "pracma" R package: its "distmat"" function makes running the
function with a large number of initial estimates (r2) significantly faster (by accelerating the inter-
point distances calculations).

This version of morris also supports matrices and three-dimensional arrays as output of model.

Value

morris returns a list of class "morris", containing all the input argument detailed before, plus the
following components:

call the matched call.

X a data.frame containing the design of experiments.

y either a vector, a matrix or a three-dimensional array of model responses (de-
pends on the output of model).

ee • if y is a vector: a (r × p) - matrix of elementary effects for all the factors.
• if y is a matrix: a (r× p× ncol(y)) - array of elementary effects for all the

factors and all columns of y.
• if y is a three-dimensional array: a (r×p×dim(y)[2]×dim(y)[3]) - array

of elementary effects for all the factors and all elements of the second and
third dimension of y.

Notice that the statistics of interest (µ, µ∗ and σ) are not stored. They can be printed by the print
method, but to extract numerical values, one has to compute them with the following instructions:

If x$y is a vector:

mu <- apply(x$ee, 2, mean)
mu.star <- apply(x$ee, 2, function(x) mean(abs(x)))
sigma <- apply(x$ee, 2, sd)

If x$y is a matrix:

mu <- apply(x$ee, 3, function(M){
apply(M, 2, mean)

})

morris 13

mu.star <- apply(abs(x$ee), 3, function(M){
apply(M, 2, mean)

})
sigma <- apply(x$ee, 3, function(M){
apply(M, 2, sd)

})

If x$y is a three-dimensional array:

mu <- sapply(1:dim(x$ee)[4], function(i){
apply(x$ee[, , , i, drop = FALSE], 3, function(M){
apply(M, 2, mean)

})
}, simplify = "array")
mu.star <- sapply(1:dim(x$ee)[4], function(i){
apply(abs(x$ee)[, , , i, drop = FALSE], 3, function(M){
apply(M, 2, mean)

})
}, simplify = "array")
sigma <- sapply(1:dim(x$ee)[4], function(i){
apply(x$ee[, , , i, drop = FALSE], 3, function(M){
apply(M, 2, sd)

})
}, simplify = "array")

It is highly recommended to use the function with the argument scale = TRUE to avoid an uncorrect
interpretation of factors that would have different orders of magnitude.

Warning messages

"keeping r’ repetitions out of r" when generating the design of experiments, identical repetitions
are removed, leading to a lower number than requested.

Author(s)

Gilles Pujol, with contributions from Frank Weber (2016)

References

M. D. Morris, 1991, Factorial sampling plans for preliminary computational experiments, Techno-
metrics, 33, 161–174.

F. Campolongo, J. Cariboni and A. Saltelli, 2007, An effective screening design for sensitivity,
Environmental Modelling \& Software, 22, 1509–1518.

G. Pujol, 2009, Simplex-based screening designs for estimating metamodels, Reliability Engineer-
ing and System Safety 94, 1156–1160.

See Also

morrisMultOut

14 morrisMultOut

Examples

Test case : the non-monotonic function of Morris
x <- morris(model = morris.fun, factors = 20, r = 4,

design = list(type = "oat", levels = 5, grid.jump = 3))
print(x)
plot(x)

library(rgl)
plot3d.morris(x) # (requires the package 'rgl')

Only for demonstration purposes: a model function returning a matrix
morris.fun_matrix <- function(X){

res_vector <- morris.fun(X)
cbind(res_vector, 2 * res_vector)

}
x <- morris(model = morris.fun_matrix, factors = 20, r = 4,

design = list(type = "oat", levels = 5, grid.jump = 3))
plot(x, y_col = 2)
title(main = "y_col = 2")

Also only for demonstration purposes: a model function returning a
three-dimensional array
morris.fun_array <- function(X){

res_vector <- morris.fun(X)
res_matrix <- cbind(res_vector, 2 * res_vector)
array(data = c(res_matrix, 5 * res_matrix),

dim = c(length(res_vector), 2, 2))
}
x <- morris(model = morris.fun_array, factors = 20, r = 4,

design = list(type = "simplex", scale.factor = 1))
plot(x, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")

morrisMultOut Morris’s Elementary Effects Screening Method for Multidimensional
Outputs

Description

morrisMultOut extend the Morris’s elementary effects screening method (Morris 1991) to model
with multidimensional outputs.

Usage

morrisMultOut(model = NULL, factors, r, design, binf = 0, bsup = 1,
scale = TRUE, ...)

S3 method for class 'morrisMultOut'
tell(x, y = NULL, ...)

morrisMultOut 15

Arguments

model NULL or a function returning a outputs a matrix having as columns the model
outputs.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

r either an integer giving the number of repetitions of the design, i.e. the number
of elementary effect computed per factor, or a vector of two integers c(r1, r2)
for the space-filling improvement (Campolongo et al. 2007). In this case, r1 is
the wanted design size, and r2 (> r1) is the size of the (bigger) population in
which is extracted the design (this can throw a warning, see below).

design a list specifying the design type and its parameters:

• type = "oat" for Morris’s OAT design (Morris 1991), with the parameters:

– levels : either an integer specifying the number of levels of the design,
or a vector of integers for different values for each factor.

– grid.jump : either an integer specifying the number of levels that are
increased/decreased for computing the elementary effects, or a vector
of integers for different values for each factor. If not given, it is set to
grid.jump = 1. Notice that this default value of one does not follow
Morris’s recommendation of levels/2.

• type = "simplex" for simplex-based design (Pujol 2009), with the pa-
rameter:

– scale.factor : a numeric value, the homothety factor of the (isomet-
ric) simplexes. Edges equal one with a scale factor of one.

binf either an integer, specifying the minimum value for the factors, or a vector for
different values for each factor.

bsup either an integer, specifying the maximum value for the factors, or a vector for
different values for each factor.

scale logical. If TRUE, the input design of experiments is scaled after building the de-
sign and before computing the elementary effects so that all factors vary within
the range [0,1]. For each factor, the scaling is done relatively to its correspond-
ing bsup and binf.

x a list of class "morris" storing the state of the screening study (parameters,
data, estimates).

y a vector of model responses.

... for morrisMultOut: any other arguments for model which are passed unchanged
each time it is called. For plot.morris: arguments to be passed to plot.default.

Details

All the methods available for object of class "morris" are available also for objects of class
"morrisMultOut". See the documentation relative to the function "morris" for more details.

16 parameterSets

Value

morrisMultOut returns a list of class "c(morrisMultOut, morris)", containing all the input
argument detailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a matrix having as columns the model responses.

ee a vector of aggregated elementary effects.

Author(s)

Filippo Monari

References

Monari F. and P. Strachan, 2017. Characterization of an airflow network model by sensitivity anal-
ysis: parameter screening, fixing, prioritizing and mapping. Journal of Building Performance Sim-
ulation, 2017, 10, 17-36.

See Also

morris

Examples

mdl <- function (X) t(atantemp.fun(X))

x = morrisMultOut(model = mdl, factors = 4, r = 50,
design = list(type = "oat", levels = 5, grid.jump = 3), binf = -1, bsup = 5, scale = FALSE)
print(x)
plot(x)

x = morrisMultOut(model = NULL, factors = 4, r = 50,
design = list(type = "oat", levels = 5, grid.jump = 3), binf = -1, bsup = 5, scale = FALSE)
Y = mdl(x[['X']])
tell(x, Y)
print(x)
plot(x)

parameterSets Generate parameter sets

Description

Generate parameter sets from given ranges, with chosen sampling scheme

parameterSets 17

Usage

parameterSets(par.ranges, samples, method = c("sobol", "innergrid", "grid"))

Arguments

par.ranges A named list of minimum and maximum parameter values

samples Number of samples to generate. For the "grid" and "innergrid" method, may
be a vector of number of samples for each parameter.

method the sampling scheme; see Details

Details

Method "sobol" generates uniformly distributed Sobol low discrepancy numbers, using the sobol
function in the randtoolbox package.

Method "grid" generates a grid within the parameter ranges, including its extremes, with number
of points determined by samples

Method "innergrid" generates a grid within the parameter ranges, with edges of the grid offset
from the extremes. The offset is calculated as half of the resolution of the grid diff(par.ranges)/samples/2.

Value

the result is a matrix, with named columns for each parameter in par.ranges. Each row represents
one parameter set.

Author(s)

Joseph Guillaume, based on similar function by Felix Andrews

See Also

delsa, which uses this function

Examples

X.grid <- parameterSets(par.ranges=list(V1=c(1,1000),V2=c(1,4)),
samples=c(10,10),method="grid")

plot(X.grid)

X.innergrid<-parameterSets(par.ranges=list(V1=c(1,1000),V2=c(1,4)),
samples=c(10,10),method="innergrid")

points(X.innergrid,col="red")

library(randtoolbox)
X.sobol<-parameterSets(par.ranges=list(V1=c(1,1000),V2=c(1,4)),

samples=100,method="sobol")
plot(X.sobol)

18 pcc

pcc Partial Correlation Coefficients

Description

pcc computes the Partial Correlation Coefficients (PCC), or Partial Rank Correlation Coefficients
(PRCC), which are sensitivity indices based on linear (resp. monotonic) assumptions, in the case of
(linearly) correlated factors.

Usage

pcc(X, y, rank = FALSE, nboot = 0, conf = 0.95)
S3 method for class 'pcc'
print(x, ...)
S3 method for class 'pcc'
plot(x, ylim = c(-1,1), ...)

Arguments

X a data frame (or object coercible by as.data.frame) containing the design of
experiments (model input variables).

y a vector containing the responses corresponding to the design of experiments
(model output variables).

rank logical. If TRUE, the analysis is done on the ranks.

nboot the number of bootstrap replicates.

conf the confidence level of the bootstrap confidence intervals.

x the object returned by pcc.

ylim the y-coordinate limits of the plot.

... arguments to be passed to methods, such as graphical parameters (see par).

Value

pcc returns a list of class "pcc", containing the following components:

call the matched call.

PCC a data frame containing the estimations of the PCC indices, bias and confidence
intervals (if rank = TRUE).

PRCC a data frame containing the estimations of the PRCC indices, bias and confi-
dence intervals (if rank = TRUE).

Author(s)

Gilles Pujol

PLI 19

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

See Also

src

Examples

a 100-sample with X1 ~ U(0.5, 1.5)
X2 ~ U(1.5, 4.5)
X3 ~ U(4.5, 13.5)
library(boot)
n <- 100
X <- data.frame(X1 = runif(n, 0.5, 1.5),

X2 = runif(n, 1.5, 4.5),
X3 = runif(n, 4.5, 13.5))

linear model : Y = X1 + X2 + X3
y <- with(X, X1 + X2 + X3)

sensitivity analysis
x <- pcc(X, y, nboot = 100)
print(x)
#plot(x) # TODO: find another example...

PLI Perturbed-Law based sensitivity Indices (PLI) for failure probability

Description

PLI computes the Perturbed-Law based Indices (PLI), also known as the Density Modification
Based Reliability Sensitivity Indices (DMBRSI), which are sensitivity indices related to a probabil-
ity of exceedence of a model output (i.e. a failure probability), estimated by a Monte Carlo method.
See Lemaitre et al. (2015).

Usage

PLI(failurepoints,failureprobabilityhat,samplesize,deltasvector,
InputDistributions,type="MOY",samedelta=TRUE)

Arguments

failurepoints a matrix of failure points coordinates, one column per variable.
failureprobabilityhat

the estimation of failure probability P through rough Monte Carlo method.

samplesize the size of the sample used to estimate P. One must have Pchap=dim(failurepoints)[1]/samplesize

deltasvector a vector containing the values of delta for which the indices will be computed.

20 PLI

InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be used
and the parameters. Implemented cases so far:

• For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaus-
sian, Left Truncated Gumbel. Using Gumber requires the package evd.

• For a variance perturbation: Gaussian, Uniform.

type a character string in which the user will specify the type of perturbation wanted.
The sense of "deltasvector" varies according to the type of perturbation:

• type can take the value "MOY",in which case deltasvector is a vector of
perturbated means.

• type can take the value "VAR",in which case deltasvector is a vector of
perturbated variances, therefore needs to be positive integers.

samedelta a boolean used with the value "MOY" for type.

• If it is set at TRUE, the mean perturbation will be the same for all the
variables.

• If not, the mean perturbation will be new_mean = mean+sigma*delta where
mean, sigma are parameters defined in InputDistributions and delta is a
value of deltasvector.

Value

PLI returns a list of size 2, including:

• A matrix where the PLI are stored. Each column corresponds to an input, each line corre-
sponds to a twist of amplitude delta.

• A matrix where their standard deviation are stored.

Author(s)

Paul Lemaitre

References

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, Density modification
based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-
1223.

E. Borgonovo and B. Iooss, 2017, Moment independent importance measures and a common ratio-
nale, In: Springer Handbook on UQ, R. Ghanem, D. Higdon and H. Owhadi (Eds).

See Also

PLIquantile

PLI 21

Examples

Model: Ishigami function with a treshold at -7
Failure points are those < -7

distributionIshigami = list()
for (i in 1:3){
distributionIshigami[[i]]=list("unif",c(-pi,pi))
distributionIshigami[[i]]$r=("runif")
}

Monte Carlo sampling to obtain failure points

N = 10^5
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3){

X[,i] = runif(N,-pi,pi)
}

T = ishigami.fun(X)
s = sum(as.numeric(T < -7)) # Number of failure
pdefchap = s/N # Failure probability
ptsdef = X[T < -7,] # Failure points

sensitivity indices with perturbation of the mean

v_delta = seq(-3,3,1/20)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="MOY",
samedelta=TRUE)
BIshm = Toto[[1]]
SIshm = Toto[[2]]

par(mar=c(4,5,1,1))
plot(v_delta,BIshm[,2],ylim=c(-4,4),xlab=expression(delta),
ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshm[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshm[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshm[,2]+1.96*SIshm[,2],col="black");
lines(v_delta,BIshm[,2]-1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,1]+1.96*SIshm[,1],col="darkgreen");
lines(v_delta,BIshm[,1]-1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,3]+1.96*SIshm[,3],col="red");
lines(v_delta,BIshm[,3]-1.96*SIshm[,3],col="red");
abline(h=0,lty=2)
legend(0,3,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

sensitivity indices with perturbation of the variance

v_delta = seq(1,5,1/4) # user parameter. (the true variance is 3.29)

22 PLIquantile

Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="VAR",
samedelta=TRUE)
BIshv=Toto[[1]]
SIshv=Toto[[2]]

par(mfrow=c(2,1),mar=c(1,5,1,1)+0.1)
plot(v_delta,BIshv[,2],ylim=c(-.5,.5),xlab=expression(V_f),
ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black");
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen");
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red");
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");

par(mar=c(4,5.1,1.1,1.1))
plot(v_delta,BIshv[,2],ylim=c(-30,.7),xlab=expression(V[f]),
ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black");
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen");
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red");
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");
legend(2.5,-10,legend=c("X1","X2","X3"),col=c("darkgreen","black","red"),
pch=c(15,19,17),cex=1.5)

PLIquantile Perturbed-Law based sensitivity Indices (PLI) for quantile

Description

PLIquantile computes the Perturbed-Law based Indices (PLI) for quantile, which are sensitivity
indices related to a quantile of a model output, estimated by a Monte Carlo method, See Sueur et
al. (2016, 2017).

Usage

PLIquantile(order,x,y,quantilehat,deltasvector,
InputDistributions,type="MOY",samedelta=TRUE)

PLIquantile 23

Arguments

order the order of the quantile to estimate.

x the matrix of simulation points coordinates, one column per variable.

y the vector of model outputs.

quantilehat the estimation of quantile q.

deltasvector a vector containing the values of delta for which the indices will be computed.
InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be used
and the parameters. Implemented cases so far:

• For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaus-
sian, Left Truncated Gumbel. Using Gumber requires the package evd.

• For a variance perturbation: Gaussian, Uniform.

type a character string in which the user will specify the type of perturbation wanted.
The sense of "deltasvector" varies according to the type of perturbation:

• type can take the value "MOY",in which case deltasvector is a vector of
perturbated means.

• type can take the value "VAR",in which case deltasvector is a vector of
perturbated variances, therefore needs to be positive integers.

samedelta a boolean used with the value "MOY" for type.

• If it is set at TRUE, the mean perturbation will be the same for all the
variables.

• If not, the mean perturbation will be new_mean = mean+sigma*delta where
mean, sigma are parameters defined in InputDistributions and delta is a
value of deltasvector.

Value

PLIquantile returns a matrix where the PLI are stored. Each column corresponds to an input, each
line corresponds to a twist of amplitude delta.

Author(s)

Paul Lemaitre, Bertrand Iooss, Thibault Delage and Roman Sueur

References

T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propaga-
tion studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty
International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density mod-
ification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation,
85:1200-1223.

R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for
sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion
Island, France, December 2016.

24 plot.support

R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for
quantiles and application to an industrial case, 10th International Conference on Mathematical
Methods in Reliability (MMR 2017), Grenoble, France, July 2017.

See Also

PLI

Examples

Model: 3D function

distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))

Monte Carlo sampling to obtain failure points

N = 10000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)

Y = 2 * X[,1] + X[,2] + X[,3]/2
q95 = quantile(Y,0.95)

sensitivity indices with perturbation of the mean

v_delta = seq(-1,1,1/10)
toto = PLIquantile(0.95,X,Y,q95,deltasvector=v_delta,

InputDistributions=distribution,type="MOY",samedelta=TRUE)

par(mar=c(4,5,1,1))
plot(v_delta,toto[,2],ylim=c(-4.5,4.5),xlab=expression(delta),
ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
points(v_delta,toto[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto[,3],col="red",pch=17,cex=1.5)
abline(h=0,lty=2)
legend(0.8,4.4,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

plot.support Support index functions: Measuring the effect of input variables over
their support

Description

Methods to plot the normalized support index functions (Fruth et al., 2016).

plot.support 25

Usage

S3 method for class 'support'
plot(x, i = 1:ncol(x$X),

xprob = FALSE, p = NULL, p.arg = NULL,
ylim = NULL, col = 1:3, lty = 1:3, lwd = c(2,2,1), cex = 1, ...)

S3 method for class 'support'
scatterplot(x, i = 1:ncol(x$X),

xprob = FALSE, p = NULL, p.arg = NULL,
cex = 1, cex.lab = 1, ...)

Arguments

x an object of class support.

i an optional vector of integers indicating the subset of input variables X_i for
plotting. Default is the entire set of input variables.

xprob an optional boolean indicating whether the inputs should be plotted in probabil-
ity scale.

p ,

p.arg list of probability names and parameters for the input distribution.

ylim ,

col ,

lty ,

lwd ,

cex ,

cex.lab usual graphical parameters.

... additional graphical parameters to be passed to scatterplot method (ggMarginal
function).

Details

If xprob = TRUE, the input variable X_i is plotted in probability scale according to the informations
provided in the arguments p, p.arg: The x-axis is thus F(x), where F is the cdf of X_i. If these
ones are not provided, the empirical distribution is used for rescaling: The x-axis is thus Fn(x),
where Fn is the empirical cdf of X_i.

Legend details:

zeta*T : normalized total support index function

zeta* : normalized 1st-order support index function

nu* : normalized DGSM

Notice that the sum of (normalized) DGSM (nu*) over all input variables is equal to 1. Furthermore,
the expectation of the total support index function (zeta*T) is equal to the (normalized) DGSM
(nu*).

26 PoincareConstant

Author(s)

O. Roustant

See Also

Estimation of support index functions: support

PoincareConstant Poincare constants for Derivative-based Global Sensitivity Measures
(DGSM)

Description

A DGSM is a sensitivity index relying on the integral (over the space domain of the input variables)
of the squared derivatives of a model output with respect to one model input variable. The product
between a DGSM and a Poincare Constant (Roustant et al., 2014: Roustant et al., 2017) gives
an upper bound of the total Sobol’ index corresponding to the same input (Lamboni et al., 2013;
Kucherenko and Iooss, 2016).

This Poincare constant depends on the type of probability distribution of the input variable. In the
particular case of log-concave distribution, analytical formulas are available for double-exponential
transport by the way of the median value (Lamboni et al., 2013). For truncated log-concave distri-
butions, different formulas are available (Roustant et al., 2014). For general distributions (truncated
or not), some Poincare constants can be computed via a relatively simple optimization process using
different formula coming from transport inequalities (Roustant et al., 2017).

Notice that the analytical formula based on the log-concave law cases is a subcase of the double-
exponential transport. In all cases, with this function, the smallest constant is obtained using the
logistic transport formula. PoincareOptimal allows to obtained the best (optimal) constant using
another (spectral) method.

IMPORTANT: This program is useless for the two following input variable distributions:

• uniform on [min,max] interval: The optimal Poincare constant is (max−min)2

pi2 .

• normal with a standard deviation sd: The optimal Poincare constant is sd2.

Usage

PoincareConstant(dfct=dnorm, qfct=qnorm, pfct=pnorm,
logconcave=FALSE, transport="logistic", optimize.interval=c(-100, 100),

truncated=FALSE, min=0, max=1, ...)

Arguments

dfct the probability density function of the input variable

qfct the quantile function of the input variable

pfct the distribution function of the input variable

PoincareConstant 27

logconcave logical value: TRUE for a log-concave distribution (analyical formula will be
used). Requires argument ’dfct’ and ’qfct’. FALSE (default value) means that
the calculations will be performed using transport-based formulas (applicable
for log-concave and non-log concave cases)

transport If logconcave=FALSE, choice of the transport inequalities to be used: "dou-
ble_exp" (default value) for double exponential transport and "logistic" for lo-
gistic transport". Requires argument ’dfct’ and ’pfct’

optimize.interval

In the transport-based case (logconcave=FALSE), a vector containing the end-
points of the interval to be searched for the maximum of the function to be
optimized

truncated logical value: TRUE for a truncated distribution. Default value is FALSE

min the minimal bound in the case of a truncated distribution

max the maximal bound in the case of a truncated distribution

... additional arguments

Details

In the case of truncated distributions (truncated=TRUE), in addition to the min and max arguments:
- the truncated distribution name has to be passed in the ’dfct’ and ’pfct’ arguments if logcon-
cave=FALSE, - the non-truncated distribution name has to be passed in the ’dfct’ and ’qfct’ argu-
ments if logconcave=TRUE. Moreover, if min and max are finite, optimize.interval is required to
be defined as c(min,max).

Value

PoincareConstant returns the value of the Poincare constant.

Author(s)

Jana Fruth, Bertrand Iooss and Olivier Roustant

References

S. Kucherenko and B. Iooss, Derivative-based global sensitivity measures, In: R. Ghanem, D. Hig-
don and H. Owhadi (eds.), Handbook of Uncertainty Quantification, 2016.

M. Lamboni, B. Iooss, A-L. Popelin and F. Gamboa, Derivative-based global sensitivity measures:
General links with Sobol’ indices and numerical tests, Mathematics and Computers in Simulation,
87:45-54, 2013.

O. Roustant, F. Barthe and B. Iooss, Poincare inequalities on intervals - application to sensitiv-
ity analysis, Electronic Journal of Statistics, Vol. 11, No. 2, 3081-3119, 2017, https://hal.
archives-ouvertes.fr/hal-01388758.

O. Roustant, J. Fruth, B. Iooss and S. Kuhnt, Crossed-derivative-based sensitivity measures for
interaction screening, Mathematics and Computers in Simulation, 105:105-118, 2014.

https://hal.archives-ouvertes.fr/hal-01388758
https://hal.archives-ouvertes.fr/hal-01388758

28 PoincareConstant

See Also

PoincareOptimal

Examples

Exponential law (log-concave)
PoincareConstant(dfct=dexp,qfct=qexp,pfct=NULL,rate=1,logconcave=TRUE) # log-concave assumption
PoincareConstant(dfct=dexp,qfct=NULL,pfct=pexp,rate=1,optimize.interval=c(0, 15))

logistic transport approach

Weibull law (log-concave)
PoincareConstant(dfct=dweibull,qfct=NULL,pfct=pweibull,optimize.interval=c(0, 15),shape=1,scale=1)

logistic transport approach

Triangular law (log-concave)
library(triangle)
PoincareConstant(dfct=dtriangle, qfct=qtriangle, pfct=NULL, a=-1, b=1, c=0, logconcave=TRUE)

log-concave assumption
PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,
transport="double_exp", optimize.interval=c(-1,1)) # Double-exponential transport approach

PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,
optimize.interval=c(-1,1)) # Logistic transport calculation

Normal N(0,1) law truncated on [-1.87,+infty]
PoincareConstant(dfct=dnorm, qfct=qnorm, pfct=pnorm, mean=0, sd=1, logconcave=TRUE,

transport="double_exp", truncated=TRUE, min=-1.87, max=999) # log-concave assumption
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc, mean=0, sd=1,
Double-exponential transport approach
truncated=TRUE, min=-1.87, max=999, transport="double_exp", optimize.interval=c(-1.87,20))

Logistic transport approach
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc, mean=0, sd=1,

truncated=TRUE, min=-1.87, max=999, optimize.interval=c(-1.87,20))

Gumbel law (log-concave)
library(evd)
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=NULL, loc=0, scale=1, logconcave=TRUE,

transport="double_exp") # log-concave assumption
PoincareConstant(dfct=dgumbel, qfct=NULL, pfct=pgumbel, loc=0, scale=1,
transport="double_exp", optimize.interval=c(-3,20)) # Double-exponential transport approach

PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1,
optimize.interval=c(-3,20)) # Logistic transport approach

Truncated Gumbel law (log-concave)
Double-exponential transport approach
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1, logconcave=TRUE,

transport="double_exp", truncated=TRUE, min=-0.92, max=3.56) # log-concave assumption
PoincareConstant(dfct=dgumbel.trunc, qfct=NULL, pfct=pgumbel.trunc, loc=0, scale=1,
truncated=TRUE, min=-0.92, max=3.56, transport="double_exp", optimize.interval=c(-0.92,3.56))

Logistic transport approach

PoincareOptimal 29

PoincareConstant(dfct=dgumbel.trunc, qfct=qgumbel.trunc, pfct=pgumbel.trunc, loc=0, scale=1,
truncated=TRUE, min=-0.92, max=3.56, optimize.interval=c(-0.92,3.56))

PoincareOptimal Optimal Poincare constants for Derivative-based Global Sensitivity
Measures (DGSM)

Description

A DGSM is a sensitivity index relying on the integral (over the space domain of the input variables)
of the squared derivatives of a model output with respect to one model input variable. The product
between a DGSM and a Poincare Constant (Roustant et al., 2014: Roustant et al., 2017), on the
type of probability distribution of the input variable, gives an upper bound of the total Sobol’ index
corresponding to the same input (Lamboni et al., 2013; Kucherenko and Iooss, 2016).

This function provides the optimal Poincare constant as explained in Roustant et al. (2017). It
solves numerically the spectral problem corresponding to the Poincare inequality, with Neumann
conditions. The differential equation is f” - V’f’= - lambda f with f’(a) = f’(b) = 0. In addition, all
the spectral decomposition can be returned by the function. The information corresponding to the
optimal constant is given in the second to last column.

IMPORTANT: This program is useless for the two following input variable distributions:

• uniform on [min,max] interval: The optimal Poincare constant is (max−min)2

pi2 .

• normal with a standard deviation sd: The optimal Poincare constant is sd2.

Usage

PoincareOptimal(distr=list("unif",c(0,1)), min=NULL, max=NULL, n = 500,
method = c("quadrature", "integral"), only.values = TRUE, plot = FALSE, ...)

Arguments

distr a list or a function corresponding to the probability distribution.

• If it is a list, it contains the name of the R distribution of the variable and
its parameters. Possible choices are: "unif" (uniform), "norm" (normal),
"exp" (exponential), "triangle" (triangular from package triangle), "gum-
bel" (from package evd), "beta", "gamma", "weibull" and "lognorm" (log-
normal). The values of the distribution parameters have to be passed in
arguments in the same order than the corresponding R function.

• If it is a function, it corresponds to the pdf. Notice that the normalizing
constant has no impact on the computation of the optimal Poincare constant
and can be ommitted.

min see below

30 PoincareOptimal

max [min,max]: interval on which the distribution is truncated. Choose low and high
quantiles in case of unbounded distribution. Choose NULL for uniform and
triangular distributions

n number of discretization steps

method method of integration: "quadrature" (default value) uses the trapez quadrature
(close and quicker), "integral" is longer but does not make any approximation

only.values if TRUE, only eigen values are computed and returned, otherwise both eigen-
values and eigenvectors are returned (default value is TRUE)

plot logical:if TRUE and only.values=FALSE, plots a minimizer of the Rayleigh ra-
tio (default value is FALSE)

... additional arguments

Details

For the uniform, normal, triangular and Gumbel distributions, the optimal constants are computed
on the standardized correponding distributions (for a better numerical efficiency). In these cases,
the return optimal constant and eigen values correspond to original distributions, while the eigen
vectors are not rescaled.

Value

PoincareOptimal returns a list containing:

opt the optimal Poincare constant

values the eigen values

vectors the eigen vectors

Author(s)

Olivier Roustant and Bertrand Iooss

References

O. Roustant, F. Barthe and B. Iooss, Poincare inequalities on intervals - application to sensitiv-
ity analysis, Electronic Journal of Statistics, Vol. 11, No. 2, 3081-3119, 2017, https://hal.
archives-ouvertes.fr/hal-01388758.

See Also

PoincareConstant

Examples

uniform [0,1]
out <- PoincareOptimal(distr=list("unif",0,1))
print(out$opt)

https://hal.archives-ouvertes.fr/hal-01388758
https://hal.archives-ouvertes.fr/hal-01388758

sb 31

truncated standard normal on [-1, 1]
out <- PoincareOptimal(distr=dnorm, min=-1, max=1, plot=TRUE, only.values=FALSE)
print(out$opt)

truncated standard normal on [-1.87, +infty]
out <- PoincareOptimal(distr=list("norm",0,1), min=-1.87, max=5, method="integral", n=500)
print(out$opt)

truncated Gumbel(0,1) on [-0.92, 3.56]
library(evd)
out <- PoincareOptimal(distr=list("gumbel",0,1), min=-0.92, max=3.56, method="integral", n=500)
print(out$opt)

symetric triangular [-1,1]
library(triangle)
out <- PoincareOptimal(distr=list("triangle",-1,1,0), min=NULL, max=NULL)
print(out$opt)

Lognormal distribution
out <- PoincareOptimal(distr=list("lognorm",1,2), min=3, max=10, only.values=FALSE,plot=TRUE,

method="integral")
print(out$opt)

sb Sequential Bifurcations

Description

sb implements the Sequential Bifurcations screening method (Bettonvil and Kleijnen 1996).

Usage

sb(p, sign = rep("+", p), interaction = FALSE)
S3 method for class 'sb'
ask(x, i = NULL, ...)
S3 method for class 'sb'
tell(x, y, ...)
S3 method for class 'sb'
print(x, ...)
S3 method for class 'sb'
plot(x, ...)

32 sb

Arguments

p number of factors.

sign a vector fo length p filled with "+" and "-", giving the (assumed) signs of the
factors effects.

interaction a boolean, TRUE if the model is supposed to be with interactions, FALSE other-
wise.

x a list of class "sb" storing the state of the screening study at the current iteration.

y a vector of model responses.

i an integer, used to force a wanted bifurcation instead of that proposed by the
algorithm.

... not used.

Details

The model without interaction is

Y = β0 +

p∑
i=1

βiXi

while the model with interactions is

Y = β0 +

p∑
i=1

βiXi +
∑

1≤i<j≤p

γijXiXj

In both cases, the factors are assumed to be uniformly distributed on [−1, 1]. This is a difference
with Bettonvil et al. where the factors vary across [0, 1] in the former case, while [−1, 1] in the
latter.

Another difference with Bettonvil et al. is that in the current implementation, the groups are splitted
right in the middle.

Value

sb returns a list of class "sb", containing all the input arguments detailed before, plus the following
components:

i the vector of bifurcations.

y the vector of observations.

ym the vector of mirror observations (model with interactions only).

The groups effects can be displayed with the print method.

Author(s)

Gilles Pujol

References

B. Bettonvil and J. P. C. Kleijnen, 1996, Searching for important factors in simulation models with
many factors: sequential bifurcations, European Journal of Operational Research, 96, 180–194.

sensiFdiv 33

Examples

a model with interactions
p <- 50
beta <- numeric(length = p)
beta[1:5] <- runif(n = 5, min = 10, max = 50)
beta[6:p] <- runif(n = p - 5, min = 0, max = 0.3)
beta <- sample(beta)
gamma <- matrix(data = runif(n = p^2, min = 0, max = 0.1), nrow = p, ncol = p)
gamma[lower.tri(gamma, diag = TRUE)] <- 0
gamma[1,2] <- 5
gamma[5,9] <- 12
f <- function(x) { return(sum(x * beta) + (x %*% gamma %*% x))}

10 iterations of SB
sa <- sb(p, interaction = TRUE)
for (i in 1 : 10) {

x <- ask(sa)
y <- list()
for (i in names(x)) {
y[[i]] <- f(x[[i]])

}
tell(sa, y)

}
print(sa)
plot(sa)

sensiFdiv Sensitivity Indices based on Csiszar f-divergence

Description

sensiFdiv conducts a density-based sensitivity analysis where the impact of an input variable is
defined in terms of dissimilarity between the original output density function and the output density
function when the input variable is fixed. The dissimilarity between density functions is measured
with Csiszar f-divergences. Estimation is performed through kernel density estimation and the
function kde of the package ks.

Usage

sensiFdiv(model = NULL, X, fdiv = "TV", nboot = 0, conf = 0.95, ...)
S3 method for class 'sensiFdiv'
tell(x, y = NULL, ...)
S3 method for class 'sensiFdiv'
print(x, ...)
S3 method for class 'sensiFdiv'
plot(x, ylim = c(0, 1), ...)

34 sensiFdiv

Arguments

model a function, or a model with a predict method, defining the model to analyze.
X a matrix or data.frame representing the input random sample.
fdiv a string or a list of strings specifying the Csiszar f-divergence to be used. Avail-

able choices are "TV" (Total-Variation), "KL" (Kullback-Leibler), "Hellinger"
and "Chi2" (Neyman chi-squared).

nboot the number of bootstrap replicates
conf the confidence level for confidence intervals.
x a list of class "sensiFdiv" storing the state of the sensitivity study (parameters,

data, estimates).
y a vector of model responses.
ylim y-coordinate plotting limits.
... any other arguments for model which are passed unchanged each time it is

called.

Details

Some of the Csiszar f-divergences produce sensitivity indices that have already been studied in
the context of sensitivity analysis. In particular, "TV" leads to the importance measure proposed
by Borgonovo (2007) (up to a constant), "KL" corresponds to the mutual information (Krzykacz-
Hausmann 2001) and "Chi2" produces the squared-loss mutual information. See Da Veiga (2015)
for details.

Value

sensiFdiv returns a list of class "sensiFdiv", containing all the input arguments detailed before,
plus the following components:

call the matched call.
X a data.frame containing the design of experiments.
y a vector of model responses.
S the estimations of the Csiszar f-divergence sensitivity indices. If several di-

vergences have been selected, Sis a list where each element encompasses the
estimations of the sensitivity indices for one of the divergence.

Author(s)

Sebastien Da Veiga, Snecma

References

Borgonovo E. (2007), A new uncertainty importance measure, Reliability Engineering and System
Safety 92(6), 771–784.

Da Veiga S. (2015), Global sensitivity analysis with dependence measures, Journal of Statistical
Computation and Simulation, 85(7), 1283–1305.

Krzykacz-Hausmann B. (2001), Epistemic sensitivity analysis based on the concept of entropy,
Proceedings of SAMO2001, 53–57.

sensiHSIC 35

See Also

kde, sensiHSIC

Examples

library(ks)

Test case : the non-monotonic Sobol g-function
n <- 100
X <- data.frame(matrix(runif(8 * n), nrow = n))

Density-based sensitivity analysis
x <- sensiFdiv(model = sobol.fun, X = X, fdiv = c("TV","KL"), nboot=30)
print(x)

sensiHSIC Sensitivity Indices based on Hilbert-Schmidt Independence Criterion
(HSIC)

Description

sensiHSIC conducts a sensitivity analysis where the impact of an input variable is defined in
terms of the distance between the input/output joint probability distribution and the product of
their marginals when they are embedded in a Reproducing Kernel Hilbert Space (RKHS). This dis-
tance corresponds to the Hilbert-Schmidt Independence Criterion (HSIC) proposed by Gretton et
al. (2005) and serves as a dependence measure between random variables, see Da Veiga (2015) for
an illustration in the context of sensitivity analysis.

Usage

sensiHSIC(model = NULL, X, kernelX = "rbf", paramX = NA,
kernelY = "rbf", paramY = NA, nboot = 0, conf = 0.95, ...)

S3 method for class 'sensiHSIC'
tell(x, y = NULL, ...)
S3 method for class 'sensiHSIC'

print(x, ...)
S3 method for class 'sensiHSIC'

plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X a matrix or data.frame representing the input random sample.

36 sensiHSIC

kernelX a string or a list of strings specifying the reproducing kernel to be used for the
input variables. If only one kernel is provided, it is used for all input variables.
Available choices are "rbf" (Gaussian), "laplace" (exponential), "dcov" (distance
covariance, see details), "raquad" (rationale quadratic), "invmultiquad" (inverse
multiquadratic), "linear" (Euclidean scalar product), "matern3" (Matern 3/2),
"matern5" (Matern 5/2), "ssanova1" (kernel of Sobolev space of order 1) and
"ssanova2" (kernel of Sobolev space of order 2).

paramX a scalar or a vector of hyperparameters to be used in the input variable ker-
nels. If only one scalar is provided, it is replicated for all input variables.
By default paramX is equal to the standard deviation of the input variable for
"rbf", "laplace", "raquad", "invmultiquad", "matern3" and "matern5" and to 1
for "dcov". Kernels "linear", "ssanova1" and "ssanova2" do not involve hyper-
parameters. If kernelX is a combination of kernels with and without hyper-
parameters, paramX must have a (dummy) value for the hyperparameter-free
kernels, see examples below.

kernelY a string specifying the reproducing kernel to be used for the output variable.
Available choices are "rbf" (Gaussian), "laplace" (exponential), "dcov" (distance
covariance, see details), "raquad" (rationale quadratic), "invmultiquad" (inverse
multiquadratic), "linear" (Euclidean scalar product), "matern3" (Matern 3/2),
"matern5" (Matern 5/2), "ssanova1" (kernel of Sobolev space of order 1) and
"ssanova2" (kernel of Sobolev space of order 2).

paramY a scalar to be used in the output variable kernel. By default paramY is equal
to the standard deviation of the output variable for "rbf", "laplace", "raquad",
"invmultiquad", "matern3" and "matern5" and to 1 for "dcov". Kernels "linear",
"ssanova1" and "ssanova2" do not involve hyperparameters.

nboot the number of bootstrap replicates

conf the confidence level for confidence intervals.

x a list of class "sensiHSIC" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Details

The HSIC sensitivity indices are obtained as a normalized version of the Hilbert-Schmidt indepen-
dence criterion:

SHSIC
i =

HSIC(Xi, Y)√
HSIC(Xi, Xi)

√
HSIC(Y, Y)

,

see Da Veiga (2014) for details. When kernelX="dcov" and kernelY="dcov", the kernel is given
by k(u, u′) = 1/2(||u|| + ||u′|| − ||u − u′||) and the sensitivity index is equal to the distance
correlation introduced by Szekely et al. (2007) as was recently proven by Sejdinovic et al. (2013).

sensiHSIC 37

Value

sensiHSIC returns a list of class "sensiHSIC", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

S the estimations of HSIC sensitivity indices.

Author(s)

Sebastien Da Veiga, Snecma

References

Da Veiga S. (2015), Global sensitivity analysis with dependence measures, Journal of Statistical
Computation and Simulation, 85(7), 1283–1305.

Gretton A., Bousquet O., Smola A., Scholkopf B. (2005), Measuring statistical dependence with
hilbert-schmidt norms, Jain S, Simon H, Tomita E, editors: Algorithmic learning theory, Lecture
Notes in Computer Science, Vol. 3734, Berlin: Springer, 63–77.

Sejdinovic D., Sriperumbudur B., Gretton A., Fukumizu K., (2013), Equivalence of distance-based
and RKHS-based statistics in hypothesis testing, Annals of Statistics 41(5), 2263–2291.

Szekely G.J., Rizzo M.L., Bakirov N.K. (2007), Measuring and testing dependence by correlation
of distances, Annals of Statistics 35(6), 2769–2794.

See Also

kde, sensiFdiv

Examples

Test case : the non-monotonic Sobol g-function
Only one kernel is provided with default hyperparameter value
n <- 100
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- sensiHSIC(model = sobol.fun, X, kernelX = "raquad", kernelY = "rbf")
print(x)

Test case : the Ishigami function
A list of kernels is given with default hyperparameter value
n <- 100
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
x <- sensiHSIC(model = ishigami.fun, X, kernelX = c("rbf","matern3","dcov"),

kernelY = "rbf")
print(x)

A combination of kernels is given and a dummy value is passed for
the first hyperparameter

38 shapleyPermEx

x <- sensiHSIC(model = ishigami.fun, X, kernelX = c("ssanova1","matern3","dcov"),
paramX = c(1,2,1), kernelY = "ssanova1")

print(x)

shapleyPermEx Estimation of Shapley effects by examining all permutations of inputs
(Agorithm of Song et al, 2016), in cases of independent or dependent
inputs

Description

shapleyPermEx implements the Monte Carlo estimation of the Shapley effects (Owen, 2014) and
their standard errors by examining all permutations of inputs (Song et al., 2016; Iooss and Prieur,
2018). It also estimates full first order and independent total Sobol’ indices (Mara et al., 2015). The
function also allows the estimations of all these sensitivity indices in case of dependent inputs. The
total cost of this algorithm is Nv + d!× (d− 1)×No×Ni model evaluations.

Usage

shapleyPermEx(model = NULL, Xall, Xset, d, Nv, No, Ni = 3, colnames = NULL, ...)
S3 method for class 'shapleyPermEx'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'shapleyPermEx'
print(x, ...)
S3 method for class 'shapleyPermEx'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

Xall Xall(n) is a function to generate a n-sample of a d-dimensional input vector
(following the required joint distribution).

Xset Xset(n, Sj, Sjc, xjc) is a function to generate a n-sample of a d-dimensional input
vector corresponding to the indices in Sj conditional on the input values xjc with
the index set Sjc (following the required joint distribution).

d number of inputs.

Nv Monte Carlo sample size to estimate the output variance.

No Outer Monte Carlo sample size to estimate the expectation of the conditional
variance of the model output.

Ni Inner Monte Carlo sample size to estimate the conditional variance of the model
output.

colnames Optional: A vector containing the names of the inputs.

x a list of class "shapleyPermEx" storing the state of the sensitivity study (pa-
rameters, data, estimates).

shapleyPermEx 39

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Details

This function requires R package "gtools".

The default values Ni = 3 is the optimal one obtained by the theoretical analysis of Song et al., 2016.

The computations of the standard errors (and then the confidence intervals) come from Iooss and
prieur (2018). Based on the outer Monte carlo loop (calculation of expectation of conditional vari-
ance), the variance of the Monte carlo estimate is divided by No. the standard error is then averaged
over the exact permutation loop. The confidence intervals at 95% correspond to +- 1.96 standard
deviations.

Value

shapleyPermEx returns a list of class "shapleyPermEx", containing all the input arguments de-
tailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used.

E the estimation of the ouput mean.

V the estimation of the ouput variance.

Shapley the estimations of the Shapley effects.

SobolS the estimations of the full first-order Sobol’ indices.

SobolT the estimations of the independent total sensitivity Sobol’ indices.

Users can ask more ouput variables with the argument return.var (for example, the list of permu-
tations perms).

Author(s)

Bertrand Iooss, Eunhye Song, Barry L. Nelson, Jeremy Staum

References

B. Iooss and C. Prieur, 2018, Shapley effects for sensitivity analysis with correlated inputs: com-
parisons with Sobol’ indices, numerical estimation and applications, https://hal.inria.fr/
hal-01556303.

S. Kucherenko, S. Tarantola, and P. Annoni, 2012, Estimation of global sensitivity indices for mod-
els with dependent variables, Computer Physics Communications, 183, 937–946.

https://hal.inria.fr/hal-01556303
https://hal.inria.fr/hal-01556303

40 shapleyPermEx

T. Mara, S. Tarantola, P. Annoni, 2015, Non-parametric methods for global sensitivity analysis of
model output with dependent inputs, Environmental Modeling & Software 72, 173–183.

A.B. Owen, 2014, Sobol’ indices and Shapley value, SIAM/ASA Journal of Uncertainty Quantifi-
cation, 2, 245–251.

A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs,
SIAM/ASA Journal of Uncertainty Quantification, 5, 986–1002.

E. Song, B.L. Nelson, and J. Staum, 2016, Shapley effects for global sensitivity analysis: Theory
and computation, SIAM/ASA Journal of Uncertainty Quantification, 4, 1060–1083.

See Also

shapleyPermRand

Examples

##################################
Test case : the Ishigami function (3 uniform independent inputs)
See Iooss and Prieur (2017)

library(gtools)

d <- 3
Xall <- function(n) matrix(runif(d*n,-pi,pi),nc=d)
Xset <- function(n, Sj, Sjc, xjc) matrix(runif(n*length(Sj),-pi,pi),nc=length(Sj))

x <- shapleyPermEx(model = ishigami.fun, Xall=Xall, Xset=Xset, d=d, Nv=1e4, No = 1e3, Ni = 3)
print(x)
plot(x)

##################################
Test case : Linear model (3 Gaussian inputs including 2 dependent)
See Iooss and Prieur (2017)

library(gtools)
library(mvtnorm) # Multivariate Gaussian variables
library(condMVNorm) # Conditional multivariate Gaussian variables

modlin <- function(X) apply(X,1,sum)

d <- 3
mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- (sig %*% t(sig)) * Cormat

Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)

shapleyPermRand 41

Xset <- function(n, Sj, Sjc, xjc){
if (is.null(Sjc)){
if (length(Sj) == 1){ rnorm(n,mu[Sj],sqrt(Covmat[Sj,Sj]))
} else{ mvtnorm::rmvnorm(n,mu[Sj],Covmat[Sj,Sj])}

} else{ condMVNorm::rcmvnorm(n, mu, Covmat, dependent.ind=Sj, given.ind=Sjc, X.given=xjc)}}

x <- shapleyPermEx(model = modlin, Xall=Xall, Xset=Xset, d=d, Nv=1e4, No = 1e3, Ni = 3)
print(x)
plot(x)

shapleyPermRand Estimation of Shapley effects by random permutations of inputs
(Agorithm of Song et al, 2016), in cases of independent or dependent
inputs

Description

shapleyPermRand implements the Monte Carlo estimation of the Shapley effects (Owen, 2014)
and their standard errors by randomly sampling permutations of inputs (Song et al., 2016). It also
estimates full first order and independent total Sobol’ indices (Mara et al., 2015), and their standard
errors. The function also allows the estimations of all these sensitivity indices in case of dependent
inputs. The total cost of this algorithm is Nv +m× (d− 1)×No×Ni model evaluations.

Usage

shapleyPermRand(model = NULL, Xall, Xset, d, Nv, m, No = 1, Ni = 3, colnames = NULL, ...)
S3 method for class 'shapleyPermRand'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'shapleyPermRand'
print(x, ...)
S3 method for class 'shapleyPermRand'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

Xall Xall(n) is a function to generate a n-sample of a d-dimensional input vector
(following the required joint distribution).

Xset Xset(n, Sj, Sjc, xjc) is a function to generate a n-sample of a d-dimensional input
vector corresponding to the indices in Sj conditional on the input values xjc with
the index set Sjc (following the required joint distribution).

d number of inputs.

Nv Monte Carlo sample size to estimate the output variance.

m Number of randomly sampled permutations.

42 shapleyPermRand

No Outer Monte Carlo sample size to estimate the expectation of the conditional
variance of the model output.

Ni Inner Monte Carlo sample size to estimate the conditional variance of the model
output.

colnames Optional: A vector containing the names of the inputs.

x a list of class "shapleyPermRand" storing the state of the sensitivity study (pa-
rameters, data, estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Details

This function requires R package "gtools".

The default values No = 1 and Ni = 3 are the optimal ones obtained by the theoretical analysis of
Song et al., 2016.

The computations of the standard errors do not consider the samples to estimate expectation of
conditional variances. They are only made regarding the random permutations and are based on the
variance of the Monte carlo estimates divided by m. The confidence intervals at 95% correspond to
+- 1.96 standard deviations.

Value

shapleyPermRand returns a list of class "shapleyPermRand", containing all the input arguments
detailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used.

E the estimation of the ouput mean.

V the estimation of the ouput variance.

Shapley the estimations of the Shapley effects.

SobolS the estimations of the full first-order Sobol’ indices.

SobolT the estimations of the independent total sensitivity Sobol’ indices.

Users can ask more ouput variables with the argument return.var (for example, the list of permu-
tations perms).

Author(s)

Bertrand Iooss, Eunhye Song, Barry L. Nelson, Jeremy Staum

shapleyPermRand 43

References

B. Iooss and C. Prieur, 2018, Shapley effects for sensitivity analysis with correlated inputs: com-
parisons with Sobol’ indices, numerical estimation and applications, https://hal.inria.fr/
hal-01556303.

S. Kucherenko, S. Tarantola, and P. Annoni, 2012, Estimation of global sensitivity indices for mod-
els with dependent variables, Computer Physics Communications, 183, 937–946.

T. Mara, S. Tarantola, P. Annoni, 2015, Non-parametric methods for global sensitivity analysis of
model output with dependent inputs, Environmental Modeling & Software 72, 173–183.

A.B. Owen, 2014, Sobol’ indices and Shapley value, SIAM/ASA Journal of Uncertainty Quantifi-
cation, 2, 245–251.

A.B. Owen and C. Prieur, 2016, On Shapley value for measuring importance of dependent inputs,
SIAM/ASA Journal of Uncertainty Quantification, 5, 986–1002.

E. Song, B.L. Nelson, and J. Staum, 2016, Shapley effects for global sensitivity analysis: Theory
and computation, SIAM/ASA Journal of Uncertainty Quantification, 4, 1060–1083.

See Also

shapleyPermEx

Examples

##################################
Test case : the Ishigami function
See Iooss and Prieur (2017)

library(gtools)

d <- 3
Xall <- function(n) matrix(runif(d*n,-pi,pi),nc=d)
Xset <- function(n, Sj, Sjc, xjc) matrix(runif(n*length(Sj),-pi,pi),nc=length(Sj))

x <- shapleyPermRand(model = ishigami.fun, Xall=Xall, Xset=Xset, d=d, Nv=1e4, m=1e4, No = 1, Ni = 3)
print(x)
plot(x)

##################################
Test case : Linear model (3 Gaussian inputs including 2 dependent)
See Iooss and Prieur (2017)

library(gtools)
library(mvtnorm) # Multivariate Gaussian variables
library(condMVNorm) # Conditional multivariate Gaussian variables

modlin <- function(X) apply(X,1,sum)

d <- 3

https://hal.inria.fr/hal-01556303
https://hal.inria.fr/hal-01556303

44 shapleyPermRand

mu <- rep(0,d)
sig <- c(1,1,2)
ro <- 0.9
Cormat <- matrix(c(1,0,0,0,1,ro,0,ro,1),d,d)
Covmat <- (sig %*% t(sig)) * Cormat

Xall <- function(n) mvtnorm::rmvnorm(n,mu,Covmat)

Xset <- function(n, Sj, Sjc, xjc){
if (is.null(Sjc)){
if (length(Sj) == 1){ rnorm(n,mu[Sj],sqrt(Covmat[Sj,Sj]))
} else{ mvtnorm::rmvnorm(n,mu[Sj],Covmat[Sj,Sj])}

} else{ condMVNorm::rcmvnorm(n, mu, Covmat, dependent.ind=Sj, given.ind=Sjc, X.given=xjc)}}

x <- shapleyPermRand(model = modlin, Xall=Xall, Xset=Xset, d=d, Nv=1e3, m = 1e4, No = 1, Ni = 3)
print(x)
plot(x)

#############################""
Test case : Multiserver queue model (6 Pert inputs including two dependent pairs)
See Song, Nelson and Staum (2016)

library(gtools)
library(mc2d) # To generate Pert random variables

d=6

model <-function(x)
{

x is a vector of six arrival rates
JL = cbind(x[,1], x[,1]*0.6 + (x[,4]+x[,6])*0.3, x[,1]*0.4 + x[,2]+x[,3]+x[,5], x[,4]+x[,6],

(x[,1]*0.4 + x[,2]+x[,3]+x[,5])*0.5
+ (x[,4]+x[,6])*0.7, (x[,1]*0.4 + x[,2]+x[,3]+x[,5])*0.5)

mu = c(1.2, 1.5, 4, 1.8, 3.6, 1.5)

rho = t(apply(JL,1,'/',mu))

return(apply(cbind(rho,x), 1, function(y) sum(y[1:6]/(1-y[1:6]))/sum(y[7:12])*24))
}

Xall <- function(n)
{

r1 = 0.5
r2 = -0.5

x1 and x2 are correlated
convert to Pearson correlation
r1 = 2 * sin(pi/6*r1)

z1 = rnorm(n);
z2 = r1 * z1 + sqrt(1-r1^2) * rnorm(n)

x1 = qpert(pnorm(z1),0.5,0.6,0.8)

shapleyPermRand 45

x2 = qpert(pnorm(z2),0.5,0.6,0.8)

x3 and x4 are correlated
convert to Pearson correlation
r2 = 2 * sin(pi/6*r2)

z3 = rnorm(n);
z4 = r2*z3 + sqrt(1-r2^2) * rnorm(n)

x3 = qpert(pnorm(z3),0.5,0.6,0.8)
x4 = qpert(pnorm(z4),0.5,0.6,0.8)

cbind(x1,x2,x3,x4,x5=rpert(n,0.5,0.6,0.8),x6=rpert(n,0.5,0.6,0.8))
}

Xset <- function(n, Sj, Sjc, xjc)
{

r1 = 0.5
r2 = -0.5

generate a vector of dependent samples of the parameters in Sj
All service time distributions are Pert(0.5, 0.6, 0.8) with correlation between
(X1, X2) and (X3, X4).

Pearson correlation
r1 = 2 * sin(pi/6*r1)
r2 = 2 * sin(pi/6*r2)

z1 = NULL; z2 = NULL;
z3 = NULL; z4 = NULL;
RV = NULL

if(any(Sjc==1))
{

x1 = xjc[which(Sjc==1)]
z1 = qnorm(ppert(x1,0.5,0.6,0.8))

}

if(any(Sjc==2))
{

x2 = xjc[which(Sjc==2)]
z2 = qnorm(ppert(x2,0.5,0.6,0.8))

}

if(any(Sjc==3))
{

x3 = xjc[which(Sjc==3)]
z3 = qnorm(ppert(x3,0.5,0.6,0.8))

}

if(any(Sjc==4))
{

46 shapleyPermRand

x4 = xjc[which(Sjc==4)]
z4 = qnorm(ppert(x4,0.5,0.6,0.8))

}

for (i in 1:length(Sj))
{

index = Sj[i]
val = NULL

if(index==1)
{

if(is.null(z2))
{

val = rpert(n,0.5,0.6,0.8)
z1 = qnorm(ppert(val,0.5,0.6,0.8))

}
else
{

z1 = r1 * z2 + sqrt(1-r1^2) * rnorm(n)
val = qpert(pnorm(z1),0.5,0.6,0.8)

}
}
else if(index ==2)
{

if(is.null(z1))
{

val = rpert(n,0.5,0.6,0.8)
z2 = qnorm(ppert(val,0.5,0.6,0.8))

}
else
{

z2 = r1 * z1 + sqrt(1-r1^2) * rnorm(n)
val = qpert(pnorm(z2),0.5,0.6,0.8)

}
}
else if(index == 3)
{

if(is.null(z4))
{

val = rpert(n,0.5,0.6,0.8)
z3 = qnorm(ppert(val,0.5,0.6,0.8))

}
else
{

z3 = r2 * z4 + sqrt(1-r2^2) * rnorm(n)
val = qpert(pnorm(z3),0.5,0.6,0.8)

}
}
else if(index == 4)
{

if(is.null(z3))
{

val = rpert(n,0.5,0.6,0.8)

sobol 47

z4 = qnorm(ppert(val,0.5,0.6,0.8))
}
else
{

z4 = r2 * z3 + sqrt(1-r2^2) * rnorm(n)
val = qpert(pnorm(z4),0.5,0.6,0.8)

}
}
else
{

val = rpert(n,0.5,0.6,0.8)
}
RV <- cbind(RV, val)

}
return(RV)

}

x <- shapleyPermRand(model = model, Xall=Xall, Xset=Xset, d=d, Nv=1e3, m = 1e4, No = 1, Ni = 3)
print(x)
plot(x)

sobol Monte Carlo Estimation of Sobol’ Indices

Description

sobol implements the Monte Carlo estimation of the Sobol’ sensitivity indices (standard estimator).
This method allows the estimation of the indices of the variance decomposition, sometimes referred
to as functional ANOVA decomposition, up to a given order, at a total cost of (N +1)×n where N
is the number of indices to estimate. This function allows also the estimation of the so-called subset
(or group) indices, i.e. the first-order indices with respect to single multidimensional inputs.

Usage

sobol(model = NULL, X1, X2, order = 1, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobol'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobol'
print(x, ...)
S3 method for class 'sobol'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

48 sobol

X2 the second random sample.

order either an integer, the maximum order in the ANOVA decomposition (all indices
up to this order will be computed), or a list of numeric vectors, the multidimen-
sional compounds of the wanted subset indices.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Value

sobol returns a list of class "sobol", containing all the input arguments detailed before, plus the
following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to one factor or one group of factors.

D the estimations of the terms of the ANOVA decomposition (not for subset in-
dices).

S the estimations of the Sobol’ sensitivity indices (not for subset indices).

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, D.boot and S.boot).

Author(s)

Gilles Pujol

References

I. M. Sobol, 1993, Sensitivity analysis for non-linear mathematical model, Math. Modelling Com-
put. Exp., 1, 407–414.

See Also

sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolEff, sobolSmthSpl, sobolmara, sobolroalhs, fast99, sobolGP, sobolMultOut

sobol2002 49

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])
library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis
x <- sobol(model = sobol.fun, X1 = X1, X2 = X2, order = 2, nboot = 100)
print(x)
#plot(x)

sobol2002 Monte Carlo Estimation of Sobol’ Indices (scheme by Saltelli 2002)

Description

sobol2002 implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices), at a total cost of (p+2)×nmodel evaluations.
These are called the Saltelli estimators.

Usage

sobol2002(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobol2002'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobol2002'
print(x, ...)
S3 method for class 'sobol2002'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

50 sobol2002

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is called

Details

BE CAREFUL! This estimator suffers from a conditioning problem when estimating the variances
behind the indices computations. This can seriously affect the Sobol’ indices estimates in case
of largely non-centered output. To avoid this effect, you have to center the model output before
applying "sobol2002". Functions "sobolEff", "soboljansen" and "sobolmartinez" do not
suffer from this problem.

Value

sobol2002 returns a list of class "sobol2002", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Gilles Pujol

References

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer
Physics Communication, 145, 580–297.

See Also

sobol, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolEff, sobolmara, sobolGP,sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

sobol2007 51

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobol2002(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)

sobol2007 Monte Carlo Estimation of Sobol’ Indices (improved formulas of
Mauntz: Sobol et al. (2007) and Saltelli et al. (2010))

Description

sobol2007 implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices), at a total cost of (p+2)×nmodel evaluations.
These are called the Mauntz estimators.

Usage

sobol2007(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobol2007'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobol2007'
print(x, ...)
S3 method for class 'sobol2007'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is called

52 sobol2007

Details

This estimator is good for small first-order and total indices.

BE CAREFUL! This estimator suffers from a conditioning problem when estimating the variances
behind the indices computations. This can seriously affect the Sobol’ indices estimates in case
of largely non-centered output. To avoid this effect, you have to center the model output before
applying "sobol2007". Functions "sobolEff", "soboljansen" and "sobolmartinez" do not
suffer from this problem.

Value

sobol2007 returns a list of class "sobol2007", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss

References

I.M. Sobol, S. Tarantola, D. Gatelli, S.S. Kucherenko and W. Mauntz, 2007, Estimating the approx-
imation errors when fixing unessential factors in global sensitivity analysis, Reliability Engineering
and System Safety, 92, 957–960.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, 2010, Variance based
sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer
Physics Communications 181, 259–270.

See Also

sobol, sobol2002, sobolSalt, soboljansen, sobolmartinez, sobolEff, sobolmara,sobolMultOut

sobolEff 53

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobol2007(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)

sobolEff Monte Carlo Estimation of Sobol’ Indices (formulas of Janon-Monod)

Description

sobolEff implements the Monte Carlo estimation of the Sobol’ sensitivity indices using the asymp-
totically efficient formulas in section 4.2.4.2 of Monod et al. (2006). Either all first-order indices or
all total-effect indices are estimated at a cost of N × (p+ 1) model calls or all closed second-order
indices are estimated at a cost of

(
N×p
2)

)
model calls.

Usage

sobolEff(model = NULL, X1, X2, order=1, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobolEff'
tell(x, y = NULL, ...)
S3 method for class 'sobolEff'
print(x, ...)
S3 method for class 'sobolEff'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

order an integer specifying the indices to estimate: 0 for total effect indices,1 for first-
order indices and 2 for closed second-order indices.

nboot the number of bootstrap replicates, or zero to use asymptotic standard deviation
estimates given in Janon et al. (2012).

54 sobolEff

conf the confidence level for confidence intervals.

x a list of class "sobolEff" storing the state of the sensitivity study (parameters,
data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

Details

The estimator used by sobolEff is defined in Monod et al. (2006), Section 4.2.4.2 and studied under
the name T_N in Janon et al. (2012). This estimator is good for large first-order indices.

Value

sobolEff returns a list of class "sobolEff", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

S the estimations of the Sobol’ sensitivity indices.

Author(s)

Alexandre Janon, Laurent Gilquin

References

Monod, H., Naud, C., Makowski, D. (2006), Uncertainty and sensitivity analysis for crop models
in Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications,
Elsevier.

A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur (2014), Asymptotic normality and efficiency
of two Sobol index estimators, ESAIM: Probability and Statistics, 18:342-364.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolSmthSpl

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sobolGP 55

sensitivity analysis
x <- sobolEff(model = sobol.fun, X1 = X1, X2 = X2, nboot = 0)
print(x)

sobolGP Kriging-based sensitivity analysis

Description

Perform a kriging-based global sensitivity analysis taking into account both the meta-model and
the Monte-Carlo errors. The Sobol indices are estimated with a Monte-Carlo integration and the
true function is substituted by a kriging model. It is built thanks to the function km of the package
DiceKriging. The complete conditional predictive distribution of the kriging model is considered
(not only the predictive mean).

Usage

sobolGP(
model,
type="SK",
MCmethod="sobol",
X1,
X2,
nsim=100,
nboot=1,
conf = 0.95,
sequential = FALSE,
candidate,
sequential.tot=FALSE,
max_iter = 1000)

S3 method for class 'sobolGP'
ask(x, tot = FALSE, ...)

S3 method for class 'sobolGP'
tell(x, y=NULL, xpoint=NULL, newcandidate=NULL, ...)

S3 method for class 'sobolGP'
print(x, ...)

S3 method for class 'sobolGP'
plot(x,...)

Arguments

model an object of class "km" specifying the kriging model built from package "DiceKriging"
(see km).

56 sobolGP

type a character string giving the type of the considered kriging model. "SK" refers
to simple kriging and "UK" refers to universal kriging (see km).

MCmethod a character string specifying the Monte-Carlo procedure used to estimate the
Sobol indices. The avaible methods are : "sobol", "sobol2002", "sobol2007",
"sobolEff" and "soboljansen".

X1 a matrix representing the first random sample.

X2 a matrix representing the second random sample.

nsim an integer giving the number of samples for the conditional Gaussian process. It
is used to quantify the uncertainty due to the kriging approximation.

nboot an integer representing the number of bootstrap replicates. It is used to quan-
tify the uncertainty due to the Monte-Carlo integrations. We recommend to set
nboot = 100.

conf a numeric representing the confidence intervals taking into account the uncer-
tainty due to the bootstrap procedure and the Gaussian process samples.

sequential a boolean. If sequential=TRUE, the procedure provides a new point where to
perform a simulation. It is the one minimizing the sum of the MAIN effect es-
timate variances. The variance is taken with respect to the conditional Gaussian
process. The new point is selected in the points candidate.

candidate a matrix representing the candidate points where the best new point to be sim-
ulated is selected. The lines represent the points and the columns represent the
dimension.

sequential.tot a boolean. If sequential.tot=TRUE, the procedure provides a new point where
to perform the simulation. It is the one minimizing the sum of the TOTAL effect
estimate. The variance is taken with respect to the conditional Gaussian process.
The new point is selected in the points candidate.

max_iter a numeric giving the maximal number of iterations for the propagative Gibbs
sampler. It is used to simulate the realizations of the Gaussian process.

x an object of class S3 "sobolGP" obtaining from the procedure sobolGP. It stores
the results of the Kriging-based global sensitivity analysis.

tot a boolean. If tot=TRUE, the procedure ask provides a point relative to the uncer-
tainty of the total Sobol’ indices (instead of first order’ ones).

xpoint a matrix representing a new point added to the kriging model.

y a numeric giving the response of the function at xpoint.

newcandidate a matrix representing the new candidate points where the best point to be simu-
lated is selected. If newcandidate=NULL, these points correspond to candidate
without the new point xpoint.

... any other arguments to be passed

Details

The function ask provides the new point where the function should be simulated. Furthermore,
the function tell performs a new kriging-based sensitivity analysis when the point x with the
corresponding observation y is added.

sobolGP 57

Value

An object of class S3 sobolGP.

• call : a list containing the arguments of the function sobolGP :

– X1 : X1
– X2 : X2
– conf : conf
– nboot : nboot
– candidate : candidate
– sequential : sequential
– max_iter : max_iter
– sequential.tot : sequential.tot
– model : model
– tot : tot
– method : MCmethod
– type : type
– nsim : nsim

• S : a list containing the results of the kriging-based sensitivity analysis for the MAIN effects:

– mean : a matrix giving the mean of the Sobol index estimates.
– var : a matrix giving the variance of the Sobol index estimates.
– ci : a matrix giving the confidence intervals of the Sobol index estimates according to
conf.

– varPG : a matrix giving the variance of the Sobol index estimates due to the Gaussian
process approximation.

– varMC : a matrix giving the variance of the Sobol index estimates due to the Monte-Carlo
integrations.

– xnew : if sequential=TRUE, a matrix giving the point in candidate which is the best to
simulate.

– xnewi : if sequential=TRUE, an integer giving the index of the point in candidate which
is the best to simulate.

• T : a list containing the results of the kriging-based sensitivity analysis for the TOTAL effects:

– mean : a matrix giving the mean of the Sobol index estimates.
– var : a matrix giving the variance of the Sobol index estimates.
– ci : a matrix giving the confidence intervals of the Sobol index estimates according to
conf.

– varPG : a matrix giving the variance of the Sobol index estimates due to the Gaussian
process approximation.

– varMC : a matrix giving the variance of the Sobol index estimates due to the Monte-Carlo
integrations.

– xnew : if sequential.tot=TRUE, a matrix giving the point in candidate which is the
best to simulate.

– xnewi : if sequential.tot=TRUE, an integer giving the index of the point in candidate
which is the best to simulate.

58 sobolGP

Author(s)

Loic Le Gratiet, EDF R&D - CNRS, I3S

References

L. Le Gratiet, C. Cannamela and B. Iooss (2014), A Bayesian approach for global sensitivity anal-
ysis of (multifidelity) computer codes, SIAM/ASA J. Uncertainty Quantification 2-1, pp. 336-363.

See Also

sobol, sobol2002, sobol2007, sobolEff, soboljansen,sobolMultOut, km

Examples

library(DiceKriging)

#--------------------------------------#
kriging model building
#--------------------------------------#

d <- 2; n <- 16
design.fact <- expand.grid(x1=seq(0,1,length=4), x2=seq(0,1,length=4))
y <- apply(design.fact, 1, branin)

m <- km(design=design.fact, response=y)

#--------------------------------------#
sobol samples & candidate points
#--------------------------------------#

n <- 1000
X1 <- data.frame(matrix(runif(d * n), nrow = n))
X2 <- data.frame(matrix(runif(d * n), nrow = n))

candidate <- data.frame(matrix(runif(d * 100), nrow = 100))

#--------------------------------------#
Kriging-based Sobol
#--------------------------------------#

res <- sobolGP(
model = m,
type="UK",
MCmethod="sobol",
X1,
X2,
nsim = 100,
conf = 0.95,
nboot=100,
sequential = TRUE,

soboljansen 59

candidate,
sequential.tot=FALSE,
max_iter = 1000
)

res
plot(res)
x <- ask(res)
y <- branin(x)
The following line doesn't work (uncorrected bug:
unused argument in km(), passed by update(), eval(), tell.sobolGP() ??)
#res.new <- tell(res,y,x)
#res.new

soboljansen Monte Carlo Estimation of Sobol’ Indices (improved formulas of
Jansen (1999) and Saltelli et al. (2010))

Description

soboljansen implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices), at a total cost of (p+2)×nmodel evaluations.
These are called the Jansen estimators.

Usage

soboljansen(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'soboljansen'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'soboljansen'
print(x, ...)
S3 method for class 'soboljansen'
plot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

60 soboljansen

ylim y-coordinate plotting limits.

y_col an integer defining the index of the column of x$y to be used for plotting the cor-
responding sensitivity indices (only applies if x$y is a matrix or an array). If set
to NULL (as per default) and x$y is a matrix or an array, the first column (respec-
tively the first element in the second dimension) of x$y is used (i.e. y_col = 1).

y_dim3 an integer defining the index in the third dimension of x$y to be used for plotting
the corresponding sensitivity indices (only applies if x$y is an array). If set to
NULL (as per default) and x$y is a three-dimensional array, the first element in
the third dimension of x$y is used (i.e. y_dim3 = 1).

... for soboljansen: any other arguments for model which are passed unchanged
each time it is called.

Details

This estimator is good for large first-order indices, and (large and small) total indices.

This version of soboljansen also supports matrices and three-dimensional arrays as output of
model. If the model output is a matrix or an array, V, S and T are matrices or arrays as well (depend-
ing on the type of y and the value of nboot).

The bootstrap outputs V.boot, S.boot and T.boot can only be returned if the model output is a
vector (using argument return.var). For matrix or array output, these objects can’t be returned.

Value

soboljansen returns a list of class "soboljansen", containing all the input arguments detailed
before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y either a vector, a matrix or a three-dimensional array of model responses (de-
pends on the output of model).

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss, with contributions from Frank Weber (2016)

soboljansen 61

References

M.J.W. Jansen, 1999, Analysis of variance designs for model output, Computer Physics Communi-
cation, 117, 35–43.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, 2010, Variance based
sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer
Physics Communications 181, 259–270.

See Also

sobol, sobol2002, sobolSalt, sobol2007, sobolmartinez, sobolEff, sobolmara,sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- soboljansen(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)

Only for demonstration purposes: a model function returning a matrix
sobol.fun_matrix <- function(X){

res_vector <- sobol.fun(X)
cbind(res_vector, 2 * res_vector)

}
x_matrix <- soboljansen(model = sobol.fun_matrix, X1, X2)
plot(x_matrix, y_col = 2)
title(main = "y_col = 2")

Also only for demonstration purposes: a model function returning a
three-dimensional array
sobol.fun_array <- function(X){

res_vector <- sobol.fun(X)
res_matrix <- cbind(res_vector, 2 * res_vector)
array(data = c(res_matrix, 5 * res_matrix),

dim = c(length(res_vector), 2, 2))
}
x_array <- soboljansen(model = sobol.fun_array, X1, X2)
plot(x_array, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")

62 sobolmara

sobolmara Monte Carlo Estimation of Sobol’ Indices via matrix permutations

Description

sobolmara implements the Monte Carlo estimation of the first-order Sobol’ sensitivity indices us-
ing the formula of Mara and Joseph (2008), called the Mara estimator. This method allows the
estimation of all first-order p indices at a cost of 2N model calls (the random sample size), then
independently of p (the number of inputs).

Usage

sobolmara(model = NULL, X1, ...)
S3 method for class 'sobolmara'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobolmara'
print(x, ...)
S3 method for class 'sobolmara'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.
X1 the random sample.
x a list of class "sobolEff" storing the state of the sensitivity study (parameters,

data, estimates).
y a vector of model responses.
return.var a vector of character strings giving further internal variables names to store in

the output object x.
ylim y-coordinate plotting limits.
... any other arguments for model which are passed unchanged each time it is

called.

Details

The estimator used by sobolmara is based on rearragement of a unique matrix via random permuta-
tions (see Mara and Joseph, 2008). Bootstrap confidence intervals are not available.

Value

sobolmara returns a list of class "sobolmara", containing all the input arguments detailed before,
plus the following components:

call the matched call.
X a data.frame containing the design of experiments.
y a vector of model responses.
S the estimations of the Sobol’ sensitivity indices.

sobolmartinez 63

Author(s)

Bertrand Iooss

References

Mara, T. and Joseph, O.R. (2008), Comparison of some efficient methods to evaluate the main effect
of computer model factors, Journal of Statistical Computation and Simulation, 78:167–178

See Also

sobolroalhs, sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolEff,sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobolmara requires 1 sample
(there are 8 factors, all following the uniform distribution on [0,1])
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis
x <- sobolmara(model = sobol.fun, X1 = X1)
print(x)
plot(x)

sobolmartinez Monte Carlo Estimation of Sobol’ Indices (formulas of Martinez
(2011))

Description

sobolmartinez implements the Monte Carlo estimation of the Sobol’ indices for both first-order
and total indices using correlation coefficients-based formulas, at a total cost of (p+ 2)× n model
evaluations. These are called the Martinez estimators.

Usage

sobolmartinez(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobolmartinez'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobolmartinez'
print(x, ...)
S3 method for class 'sobolmartinez'
plot(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...)

64 sobolmartinez

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

nboot the number of bootstrap replicates, or zero to use theoretical formulas based on
confidence interfaces of correlation coefficient (Martinez, 2011).

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

y_col an integer defining the index of the column of x$y to be used for plotting the cor-
responding sensitivity indices (only applies if x$y is a matrix or an array). If set
to NULL (as per default) and x$y is a matrix or an array, the first column (respec-
tively the first element in the second dimension) of x$y is used (i.e. y_col = 1).

y_dim3 an integer defining the index in the third dimension of x$y to be used for plotting
the corresponding sensitivity indices (only applies if x$y is an array). If set to
NULL (as per default) and x$y is a three-dimensional array, the first element in
the third dimension of x$y is used (i.e. y_dim3 = 1).

... for sobolmartinez: any other arguments for model which are passed unchanged
each time it is called

Details

This estimator supports missing values (NA or NaN) which can occur during the simulation of the
model on the design of experiments (due to code failure) even if Sobol’ indices are no more rigorous
variance-based sensitivity indices if missing values are present. In this case, a warning is displayed.

This version of sobolmartinez also supports matrices and three-dimensional arrays as output of
model. Bootstrapping (including bootstrap confidence intervals) is also supported for matrix or
array output. However, theoretical confidence intervals (for nboot = 0) are only supported for
vector output. If the model output is a matrix or an array, V, S and T are matrices or arrays as well
(depending on the type of y and the value of nboot).

The bootstrap outputs V.boot, S.boot and T.boot can only be returned if the model output is a
vector (using argument return.var). For matrix or array output, these objects can’t be returned.

Value

sobolmartinez returns a list of class "sobolmartinez", containing all the input arguments de-
tailed before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

sobolmartinez 65

y either a vector, a matrix or a three-dimensional array of model responses (de-
pends on the output of model).

V the estimations of normalized variances of the Conditional Expectations (VCE)
with respect to each factor and also with respect to the complementary set of
each factor ("all but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Bertrand Iooss, with contributions from Frank Weber (2016)

References

J-M. Martinez, 2011, Analyse de sensibilite globale par decomposition de la variance, Presenta-
tion in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri
Poincare, Paris, France.

M. Baudin, K. Boumhaout, T. Delage, B. Iooss and J-M. Martinez, 2016, Numerical stability of
Sobol’ indices estimation formula, Proceedings of the SAMO 2016 Conference, Reunion Island,
France, December 2016

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, soboltouati, sobolEff, sobolmara,sobolMultOut

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobolmartinez(model = sobol.fun, X1, X2, nboot = 0)
print(x)
plot(x)

Only for demonstration purposes: a model function returning a matrix
sobol.fun_matrix <- function(X){

res_vector <- sobol.fun(X)

66 sobolMultOut

cbind(res_vector, 2 * res_vector)
}
x_matrix <- sobolmartinez(model = sobol.fun_matrix, X1, X2)
plot(x_matrix, y_col = 2)
title(main = "y_col = 2")

Also only for demonstration purposes: a model function returning a
three-dimensional array
sobol.fun_array <- function(X){

res_vector <- sobol.fun(X)
res_matrix <- cbind(res_vector, 2 * res_vector)
array(data = c(res_matrix, 5 * res_matrix),

dim = c(length(res_vector), 2, 2))
}
x_array <- sobolmartinez(model = sobol.fun_array, X1, X2)
plot(x_array, y_col = 2, y_dim3 = 2)
title(main = "y_col = 2, y_dim3 = 2")

sobolMultOut Monte Carlo Estimation of Aggregated Sobol’ Indices for multiple and
functional outputs

Description

sobolMultOut implements the aggregated Sobol’ indices for multiple outputs. It consists in av-
eraging all the Sobol indices weighted by the variance of their corresponding output. Moreover,
this function computes and plots the functional (unidimensional) Sobol’ indices for functional (uni-
dimensional) model output. Sobol’ indices for both first-order and total indices are estimated by
Monte Carlo formulas.

Usage

sobolMultOut(model = NULL, q = 1, X1, X2, MCmethod = "sobol",
plotFct=FALSE, ...)

S3 method for class 'sobolMultOut'
print(x, ...)
S3 method for class 'sobolMultOut'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

q dimension of the model output vector.

X1 the first random sample.

X2 the second random sample.

MCmethod a character string specifying the Monte-Carlo procedure used to estimate the
Sobol indices. The avaible methods are : "sobol", "sobol2002", "sobol2007",
"soboljansen", sobolmara and sobolGP.

sobolMultOut 67

plotFct if TRUE, 1D functional Sobol indices are computed and plotted in an external
window (default=FALSE).

x a list of class MCmethod storing the state of the sensitivity study (parameters,
data, estimates).

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is called

Details

For this function, there are several gaps: the bootstrap estimation of confidence intervals is not
avalaible and the tell function does not work.

Value

sobolMultOut returns a list of class MCmethod, containing all its input arguments, plus the follow-
ing components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of the aggregated Variances of the Conditional Expectations
(VCE) with respect to each factor and also with respect to the complementary
set of each factor ("all but Xi").

S the estimations of the aggregated Sobol’ first-order indices.

T the estimations of the aggregated Sobol’ total sensitivity indices.

Sfct the estimations of the functional Sobol’ first-order indices (if PlotFct=TRUE).

Tfct the estimations of the functional Sobol’ total sensitivity indices (if PlotFct=TRUE).

Author(s)

Bertrand Iooss

References

M. Lamboni, H. Monod and D. Makowski, 2011, Multivariate sensitivity analysis to measure global
contribution of input factors in dynamic models, Reliability Engineering and System Safety, 96:450-
459.

F. Gamboa, A. Janon, T. Klein and A. Lagnoux, 2014, Sensitivity indices for multivariate outputs,
Electronic Journal of Statistics, 8:575-603.

See Also

sobol, sobol2002, sobol2007, soboljansen, sobolmara, sobolGP

68 sobolowen

Examples

Functional toy function: Arctangent temporal function (Auder, 2011)
X: input matrix (in [-7,7]^2)
q: number of discretization steps of [0,2pi] interval
output: vector of q values

atantemp <- function(X, q = 100){

n <- dim(X)[[1]]
t <- (0:(q-1)) * (2*pi) / (q-1)

res <- matrix(0,ncol=q,nrow=n)
for (i in 1:n) res[i,] <- atan(X[i,1]) * cos(t) + atan(X[i,2]) * sin(t)

return(res)
}

Tests functional toy fct

y0 <- atantemp(matrix(c(-7,0,7,-7,0,7),ncol=2))
#plot(y0[1,],type="l")
#apply(y0,1,lines)

n <- 100
X <- matrix(c(runif(2*n,-7,7)),ncol=2)
y <- atantemp(X)
x11()
plot(y0[2,],ylim=c(-2,2),type="l")
apply(y,1,lines)

Sobol indices computations

n <- 1000
X1 <- data.frame(matrix(runif(2*n,-7,7), nrow = n))
X2 <- data.frame(matrix(runif(2*n,-7,7), nrow = n))

x11()
sa <- sobolMultOut(model=atantemp, q=100, X1, X2,

MCmethod="soboljansen", plotFct=TRUE)
print(sa)
x11()
plot(sa)

sobolowen Monte Carlo Estimation of Sobol’ Indices (improved formulas of
Owen (2013)

sobolowen 69

Description

sobolowen implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices). Take as input 3 independent matrices. These
are called the Owen estimators.

Usage

sobolowen(model = NULL, X1, X2, X3, nboot = 0, conf = 0.95, varest = 2, ...)
S3 method for class 'sobolowen'
tell(x, y = NULL, return.var = NULL, varest = 2, ...)
S3 method for class 'sobolowen'
print(x, ...)
S3 method for class 'sobolowen'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

X3 the third random sample.

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

varest choice for the variance estimator for the denominator of the Sobol’ indices.
varest=1 is for a classical estimator. varest=2 (default) is for the estimator pro-
posed in Janon et al. (2012).

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is called

Value

sobolowen returns a list of class "sobolowen", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but Xi").

70 sobolowen

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap outputs
V.boot, S.boot and T.boot).

Author(s)

Taieb Touati and Bernardo Ramos

References

A. Owen, 2013, Better estimations of small Sobol’ sensitivity indices, ACM Transactions on Mod-
eling and Computer Simulations (TOMACS), 23(2), 11.

Janon, A., Klein T., Lagnoux A., Nodet M., Prieur C. (2012), Asymptotic normality and efficiency
of two Sobol index estimators. Accepted in ESAIM: Probability and Statistics.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolmartinez, sobolEff, sobolmara, sobolGP

Examples

Test case : the non-monotonic Sobol g-function

The method of sobolowen requires 3 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
X3 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobolowen(model = sobol.fun, X1, X2, X3, nboot = 100)
print(x)
plot(x)

sobolroalhs 71

sobolroalhs Sobol’ Indices Estimation Using Replicated OA-based LHS

Description

sobolroalhs implements the estimation of the Sobol’ sensitivity indices introduced by Tissot &
Prieur (2015) using two replicated designs (Latin hypercubes or orthogonal arrays). This function
estimates either all first-order indices or all closed second-order indices at a total cost of 2 × N
model evaluations. For closed second-order indices N = q2 where q ≥ d − 1 is a prime number
corresponding to the number of levels of the orthogonal array, and where d indicates the number of
factors.

Usage

sobolroalhs(model = NULL, factors, N, p=1, order, tail=TRUE, conf=0.95, nboot=0, ...)
S3 method for class 'sobolroalhs'
tell(x, y = NULL, ...)
S3 method for class 'sobolroalhs'
print(x, ...)
S3 method for class 'sobolroalhs'
plot(x, ylim = c(0,1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

N an integer giving the size of each replicated design (for a total of 2 ×N model
evaluations).

p an integer giving the number of model outputs.

order an integer giving the order of the indices (1 or 2).

tail a boolean specifying the method used to choose the number of levels of the
orthogonal array (see "Warning messages").

conf the confidence level for confidence intervals.

nboot the number of bootstrap replicates.

x a list of class "sobolroalhs" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

72 sobolroalhs

Details

sobolroalhs automatically assigns a uniform distribution on [0,1] to each input. Transformations
of distributions (between U[0,1] and the wanted distribution) have to be realized before the call to
tell() (see "Examples").

Missing values (i.e NA values) in outputs are automatically handled by the function.

This function also supports multidimensional outputs (matrices in y or as output of model). In this
case, aggregated Sobol’ indices are returned (see sobolMultOut).

Value

sobolroalhs returns a list of class "sobolroalhs", containing all the input arguments detailed
before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments (row concatenation of the
two replicated designs).

y the responses used.

OA the orthogonal array constructed (NULL if order=1).

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor.

S the estimations of the Sobol’ indices.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " when
order= 2, the number of levels of the orthogonal array must be a prime number. If N is not a
square of a prime number, then this warning message indicates that it was replaced depending
on the value of tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the
square of the prime number preceding (resp. following) the square root of N.

"The value entered for N is not satisfying the constraint N ≥ (d− 1)2. It has been replaced by: "
when order= 2, the following constraint must be satisfied N ≥ (d− 1)2 where d is the num-
ber of factors. This warning message indicates that N was replaced by the square of the prime
number following (or equals to) d− 1.

Author(s)

Laurent Gilquin

References

A.S. Hedayat, N.J.A. Sloane and J. Stufken, 1999, Orthogonal Arrays: Theory and Applications,
Springer Series in Statistics.

F. Gamboa, A. Janon, T. Klein and A. Lagnoux, 2014, Sensitivity indices for multivariate outputs,
Electronic Journal of Statistics, 8:575-603.

J.Y. Tissot and C. Prieur, 2015, Estimating Sobol’s indices combining Monte Carlo integration and
Latin hypercube sampling, J. Statist. Comput. Simulation, 85:1358-1381.

sobolroalhs 73

See Also

sobolmara, sobolroauc, sobolMultOut

Examples

library(boot)
library(numbers)

####################
Test case: the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,1])

first-order sensitivity indices
x <- sobolroalhs(model = sobol.fun, factors = 8, N = 1000, order = 1, nboot=100)
print(x)
plot(x)

closed second-order sensitivity indices
x <- sobolroalhs(model = sobol.fun, factors = 8, N = 1000, order = 2, nboot=100)
print(x)
plot(x)

####################
Test case: dealing with non-uniform distributions

x <- sobolroalhs(model = NULL, factors = 3, N = 1000, order =1, nboot=0)

X1 follows a log-normal distribution:
x$X[,1] <- qlnorm(x$X[,1])

X2 follows a standard normal distribution:
x$X[,2] <- qnorm(x$X[,2])

X3 follows a gamma distribution:
x$X[,3] <- qgamma(x$X[,3],shape=0.5)

toy example
toy <- function(x){rowSums(x)}
y <- toy(x$X)
tell(x, y)
print(x)
plot(x)

####################
Test case : multidimensional outputs

toy <- function(x){cbind(x[,1]+x[,2]+x[,1]*x[,2],2*x[,1]+3*x[,1]*x[,2]+x[,2])}
x <- sobolroalhs(model = toy, factors = 3, N = 1000, p=2, order =1, nboot=100)
print(x)
plot(x)

74 sobolroauc

sobolroauc Sobol’ Indices estimation under inequality constraints

Description

sobolroauc deals with the estimation of Sobol’ sensitivity indices when there exists one or multiple
sets of constrained factors. Constraints within a set are expressed as inequality constraints (simplex
constraint). This function generalizes the procedure of Tissot and Prieur (2015) to estimate either
all first-order indices or all closed second-order indices at a total cost of 2×N model evaluations.
For closed second-order indices N = q2 where q ≥ d − 1 is a prime number denoting the number
of levels of the orthogonal array, and where d indicates the number of independent factors or sets of
factors.

Usage

sobolroauc(model = NULL, factors, constraints = NULL, N, p = 1, order,
tail = TRUE, conf = 0.95, nboot = 0, ...)

S3 method for class 'sobolroauc'
tell(x, y = NULL, ...)
S3 method for class 'sobolroauc'
print(x, ...)
S3 method for class 'sobolroauc'
plot(x, ylim = c(0,1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

constraints a list giving the sets of constrained factors (see "Details").

N an integer giving the size of each replicated design (for a total of 2 ×N model
evaluations).

p an integer giving the number of model outputs.

order an integer giving the order of the indices (1 or 2).

tail a boolean specifying the method used to choose the number of levels of the
orthogonal array (see "Warning messages").

conf the confidence level for confidence intervals.

nboot the number of bootstrap replicates.

x a list of class "sobolroauc" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is
called.

sobolroauc 75

Details

constraints list the sets of factors depending on each other through inequality constraints (see
"Examples"). A same factor is not allowed to appear in multiple sets. Factors not appearing in
constraints are assumed to be independent and follow each a uniform distribution on [0,1]. One
Sobol’ index is estimated for each independent factor or set of factors.

Missing values (i.e NA values) in the model responses are automatically handled by the function.

This function also supports multidimensional outputs (matrices in y or as output of model). In this
case, aggregated Sobol’ indices are returned (see sobolMultOut).

Value

sobolroauc returns a list of class "sobolroauc", containing all the input arguments detailed be-
fore, plus the following components:

call the matched call.

X a data.frame containing the design of experiments (concatenation of two repli-
cated designs).

y the responses used.

OA the orthogonal array constructed (NULL if order=1).

V the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor.

S the estimations of the Sobol’ indices.

Warning messages

"The value entered for N is not the square of a prime number. It has been replaced by: " when
order= 2, the number of levels of the orthogonal array must be a prime number. If N is not a
square of a prime number, then this warning message indicates that it was replaced depending
on the value of tail. If tail=TRUE (resp. tail=FALSE) the new value of N is equal to the
square of the prime number preceding (resp. following) the square root of N.

"The value entered for N is not satisfying the constraint N ≥ (d− 1)2. It has been replaced by: "
when order= 2, the following constraint must be satisfied N ≥ (d − 1)2 where d is the
number of independent factors or sets of factors. This warning message indicates that N was
replaced by the square of the prime number following (or equals to) d− 1.

Author(s)

Laurent Gilquin

References

L. Devroye, 1986, Non-Uniform Random Variate Generation. Springer-Verlag.

J. Jacques, C. Lavergne and N. Devictor, 2006, Sensitivity Analysis in presence of model uncer-
tainty and correlated inputs. Reliability Engineering & System Safety, 91:1126-1134.

L. Gilquin, C. Prieur and E. Arnaud, 2015, Replication procedure for grouped Sobol’ indices esti-
mation in dependent uncertainty spaces, Information and Inference, 4:354-379.

76 sobolSalt

J.Y. Tissot and C. Prieur, 2015, Estimating Sobol’s indices combining Monte Carlo integration and
Latin hypercube sampling, J. Statist. Comput. Simulation, 85:1358-1381.

See Also

sobolroalhs, sobolmara

Examples

library(boot)
library(numbers)

Test case: the non-monotonic Sobol g-function
(there are 8 factors, all following the uniform distribution on [0,1])

Suppose we have the inequality constraints: X1 <= X3 and X4 <= X6.

first-order sensitivity indices
x <- sobolroauc(model = sobol.fun, factors = 8, constraints = list(c(1,3),c(4,6)),

N = 1000, order = 1, nboot=100)
print(x)
plot(x)

closed second-order sensitivity indices
x <- sobolroauc(model = sobol.fun, factors = 8, constraints = list(c(1,3),c(4,6)),

N = 1000, order = 2, nboot=100)
print(x)
plot(x)

sobolSalt Monte Carlo Estimation of Sobol’ Indices based on Saltelli schemes

Description

sobolSalt implements the Monte Carlo estimation of the Sobol’ indices for either both first-order
and total effect indices at the same time (alltogether 2p indices) at a total cost of n× (p+2) model
evaluations; or first-order, second-order and total indices at the same time (alltogether 2p+p× (p−
1)/2 indices) at a total cost of n× (2× p+ 2) model evaluations.

Usage

sobolSalt(model = NULL, X1, X2, scheme="A", nboot = 0, conf = 0.95, ...)
S3 method for class 'sobolSalt'
tell(x, y = NULL, ...)
S3 method for class 'sobolSalt'
print(x, ...)
S3 method for class 'sobolSalt'
plot(x, ylim = c(0, 1), choice, ...)

sobolSalt 77

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample (containing n points).

X2 the second random sample (containing n points).

scheme a letter "A" or "B" indicating which scheme to use (see "Details")

nboot the number of bootstrap replicates.

conf the confidence level for bootstrap confidence intervals.

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

ylim y-coordinate plotting limits.

choice an integer specifying which indices to plot: 1 for first-order and total effect
indices, 2 for second-order indices.

... any other arguments for model which are passed unchanged each time it is called

Details

The estimators used are the one implemented in "sobolEff".

scheme specifies which Saltelli’s scheme is to be used: "A" to estimate both first-order and total
effect indices, "B" to estimate first-order, second-order and total effect indices.

Value

sobolSalt returns a list of class "sobolSalt", containing all the input arguments detailed before,
plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used.

V the model variance.

S the estimations of the Sobol’ first-order indices.

S2 the estimations of the Sobol’ second-order indices (only for scheme "B").

T the estimations of the Sobol’ total sensitivity indices.

Author(s)

Laurent Gilquin

References

A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur (2014), Asymptotic normality and efficiency
of two Sobol index estimators, ESAIM: Probability and Statistics, 18:342-364.

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer
Physics Communication, 145:580-297.

78 sobolSmthSpl

See Also

sobol, sobol2007, soboljansen, sobolmartinez, sobolEff

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- sobolSalt(model = sobol.fun, X1, X2, scheme="A", nboot = 100)
print(x)
plot(x, choice=1)

sobolSmthSpl Estimation of Sobol’ First Order Indices with B-spline Smoothing

Description

Determines the Si coefficient for singular parameters through B-spline smoothing with roughness
penalty.

Usage

sobolSmthSpl(Y, X)

Arguments

Y vector of model responses.

X matrix having as rows the input vectors corresponding to the responses in Y.

Value

sobolSmthSpl returns a list of class "sobolSmthSpl" containing the following components:

call the matched call.

X the provided input matrix.

Y the provided matrix of model responses.

sobolTIIlo 79

S a matrix having the following columns: Si (the estimated first order Sobol’ in-
dices), Si.e (the standard errors for the estimated first order Sobol’ indices) and
q0.05 (the 0.05 quantiles assuming for the Si indices Normal distributions cen-
tred on the Si estimates and with standard deviations the calculated standard
errors)

Author(s)

Filippo Monari

References

Saltelli, A; Ratto, M; Andres, T; Campolongo, F; Cariboni, J; Gatelli, D; Saisana, M & Tarantola,
S. Global Sensitivity Analysis: The Primer Wiley-Interscience, 2008

M Ratto and A. Pagano, 2010, Using recursive algorithms for the efficient identification of smooth-
ing spline ANOVA models, Advances in Statistical Analysis, 94, 367–388.

See Also

sobol2002, sobol2007, soboljansen, sobolmartinez, sobolEff, sobolmara, sobolroalhs, fast99, sobolGP, sobolMultOut

Examples

X = matrix(runif(10000), ncol = 10)
Y = sobol.fun(X)
sa = sobolSmthSpl(Y, X)
plot(sa)

sobolTIIlo Liu and Owen Estimation of Total Interaction Indices

Description

sobolTIIlo implements the asymptotically efficient formula of Liu and Owen (2006) for the es-
timation of total interaction indices as described e.g. in Section 3.4 of Fruth et al. (2014). Total
interaction indices (TII) are superset indices of pairs of variables, thus give the total influence of
each second-order interaction. The total cost of the method is

(
(1+N+

(N,2))×n
)

where N is the number of
indices to estimate. Asymptotic confidence intervals are provided. Via plotFG (which uses func-
tions of the package igraph), the TIIs can be visualized in a so-called FANOVA graph as described
in section 2.2 of Muehlenstaedt et al. (2012).

Usage

sobolTIIlo(model = NULL, X1, X2, conf = 0.95, ...)
S3 method for class 'sobolTIIlo'
tell(x, y = NULL, ...)
S3 method for class 'sobolTIIlo'
print(x, ...)

80 sobolTIIlo

S3 method for class 'sobolTIIlo'
plot(x, ylim = NULL, ...)
S3 method for class 'sobolTIIlo'
plotFG(x)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

conf the confidence level for asymptotic confidence intervals, defaults to 0.95.

x a list of class "sobolTIIlo" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

... any other arguments for model which are passed unchanged each time it is
called.

ylim optional, the y limits of the plot.

Value

sobolTIIlo returns a list of class "sobolTIIlo", containing all the input arguments detailed be-
fore, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

V the estimation of the overall variance.

tii.unscaled the unscaled estimations of the TIIs.

tii.scaled the scaled estimations of the TIIs together with asymptotic confidence intervals.

Author(s)

Jana Fruth

References

R. Liu, A. B. Owen, 2006, Estimating mean dimensionality of analysis of variance decompositions,
JASA, 101 (474), 712–721.

J. Fruth, O. Roustant, S. Kuhnt, 2014, Total interaction index: A variance-based sensitivity index
for second-order interaction screening, J. Stat. Plan. Inference, 147, 212–223.

T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on
FANOVA-decomposition, Stat. Comput., 22 (3), 723–738.

See Also

sobolTIIpf

sobolTIIpf 81

Examples

Test case : the Ishigami function

The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))

sensitivity analysis (the true values of the scaled TIIs are 0, 0.244, 0)
x <- sobolTIIlo(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)

plot of tiis and FANOVA graph
plot(x)

library(igraph)
plotFG(x)

sobolTIIpf Pick-freeze Estimation of Total Interaction Indices

Description

sobolTIIpf implements the pick-freeze estimation of total interaction indices as described in Sec-
tion 3.3 of Fruth et al. (2014). Total interaction indices (TII) are superset indices of pairs of
variables, thus give the total influence of each second-order interaction. The pick-freeze estimation
enables the strategy to reuse evaluations of Saltelli (2002). The total costs are (1+N)×n whereN
is the number of indices to estimate. Via plotFG, the TIIs can be visualized in a so-called FANOVA
graph as described in section 2.2 of Muehlenstaedt et al. (2012).

Usage

sobolTIIpf(model = NULL, X1, X2, ...)
S3 method for class 'sobolTIIpf'
tell(x, y = NULL, ...)
S3 method for class 'sobolTIIpf'
print(x, ...)
S3 method for class 'sobolTIIpf'
plot(x, ylim = NULL, ...)
S3 method for class 'sobolTIIpf'
plotFG(x)

82 sobolTIIpf

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

x a list of class "sobolTIIpf" storing the state of the sensitivity study (parame-
ters, data, estimates).

y a vector of model responses.

... any other arguments for model which are passed unchanged each time it is
called.

ylim optional, the y limits of the plot.

Value

sobolTIIpf returns a list of class "sobolTIIpf", containing all the input arguments detailed be-
fore, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y a vector of model responses.

V the estimation of the overall variance.

tii.unscaled the unscaled estimations of the TIIs together.

tii.scaled the scaled estimations of the TIIs.

Author(s)

Jana Fruth

References

J. Fruth, O. Roustant, S. Kuhnt, 2014, Total interaction index: A variance-based sensitivity index
for second-order interaction screening, J. Stat. Plan. Inference, 147, 212–223.

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Comput.
Phys. Commun., 145, 580-297.

T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on
FANOVA-decomposition, Stat. Comput., 22 (3), 723–738.

See Also

sobolTIIlo

soboltouati 83

Examples

Test case : the Ishigami function

The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))

sensitivity analysis (the true values are 0, 0.244, 0)
x <- sobolTIIpf(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)

plot of tiis and FANOVA graph
plot(x)

library(igraph)
plotFG(x)

soboltouati Monte Carlo Estimation of Sobol’ Indices (formulas of Martinez
(2011) and Touati (2016))

Description

soboltouati implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices using correlation coefficients-based formulas, at a total cost of (p + 2) × n model
evaluations. These are called the Martinez estimators. It also computes their confidence intervals
based on asymptotic properties of empirical correlation coefficients.

Usage

soboltouati(model = NULL, X1, X2, conf = 0.95, ...)
S3 method for class 'soboltouati'
tell(x, y = NULL, return.var = NULL, ...)
S3 method for class 'soboltouati'
print(x, ...)
S3 method for class 'soboltouati'
plot(x, ylim = c(0, 1), ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X1 the first random sample.

X2 the second random sample.

conf the confidence level for confidence intervals, or zero to avoid their computation
if they are not needed.

84 soboltouati

x a list of class "sobol" storing the state of the sensitivity study (parameters, data,
estimates).

y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

... any other arguments for model which are passed unchanged each time it is called

Details

This estimator supports missing values (NA or NaN) which can occur during the simulation of the
model on the design of experiments (due to code failure) even if Sobol’ indices are no more rigorous
variance-based sensitivity indices if missing values are present. In this case, a warning is displayed.

Value

soboltouati returns a list of class "soboltouati", containing all the input arguments detailed
before, plus the following components:

call the matched call.

X a data.frame containing the design of experiments.

y the response used

V the estimations of normalized variances of the Conditional Expectations (VCE)
with respect to each factor and also with respect to the complementary set of
each factor ("all but Xi").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Author(s)

Taieb Touati, Khalid Boumhaout

References

J-M. Martinez, 2011, Analyse de sensibilite globale par decomposition de la variance, Presenta-
tion in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri
Poincare, Paris, France.

T. Touati, 2016, Confidence intervals for Sobol’ indices. Proceedings of the SAMO 2016 Confer-
ence, Reunion Island, France, December 2016.

T. Touati, 2017, Intervalles de confiance pour les indices de Sobol, 49emes Journees de la SFdS,
Avignon, France, Juin 2017.

See Also

sobol, sobol2002, sobolSalt, sobol2007, soboljansen, sobolEff, sobolmara, sobolmartinez

src 85

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
There are 8 factors, all following the uniform distribution
on [0,1]

library(boot)
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))

sensitivity analysis

x <- soboltouati(model = sobol.fun, X1, X2)
print(x)
plot(x)

src Standardized Regression Coefficients

Description

src computes the Standardized Regression Coefficients (SRC), or the Standardized Rank Regres-
sion Coefficients (SRRC), which are sensitivity indices based on linear or monotonic assumptions
in the case of independent factors.

Usage

src(X, y, rank = FALSE, nboot = 0, conf = 0.95)
S3 method for class 'src'
print(x, ...)
S3 method for class 'src'
plot(x, ylim = c(-1,1), ...)

Arguments

X a data frame (or object coercible by as.data.frame) containing the design of
experiments (model input variables).

y a vector containing the responses corresponding to the design of experiments
(model output variables).

rank logical. If TRUE, the analysis is done on the ranks.
nboot the number of bootstrap replicates.
conf the confidence level of the bootstrap confidence intervals.
x the object returned by src.
ylim the y-coordinate limits of the plot.
... arguments to be passed to methods, such as graphical parameters (see par).

86 src

Value

src returns a list of class "src", containing the following components:

call the matched call.

SRC a data frame containing the estimations of the SRC indices, bias and confidence
intervals (if rank = FALSE).

SRRC a data frame containing the estimations of the SRRC indices, bias and confi-
dence intervals (if rank = TRUE).

Author(s)

Gilles Pujol

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

See Also

pcc

Examples

a 100-sample with X1 ~ U(0.5, 1.5)
X2 ~ U(1.5, 4.5)
X3 ~ U(4.5, 13.5)

library(boot)
n <- 100
X <- data.frame(X1 = runif(n, 0.5, 1.5),

X2 = runif(n, 1.5, 4.5),
X3 = runif(n, 4.5, 13.5))

linear model : Y = X1 + X2 + X3

y <- with(X, X1 + X2 + X3)

sensitivity analysis

x <- src(X, y, nboot = 100)
print(x)
plot(x)

support 87

support Support index functions: Measuring the effect of input variables over
their support

Description

Function to estimate the first-order and total support index functions (Fruth et al., 2016).

Usage

support(model, X, Xnew = NULL, fX = NULL, gradfX = NULL, h = 1e-06, ...)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

X a random sample.

Xnew an optional set of points where to visualize the support indices. If missing, X is
used.

fX an optional vector containing the evaluations of model at X. If missing, fX is
computed by evaluating model at X.

gradfX an optional vector containing the evaluations of the gradient of model at X. If
missing, gradfX is approximated by finite differences of model at X.

h a small number for computing finite differences (f(X_i + h) - f(X_i))/h.
Default is 1e-6.

... optional arguments to be passed to model.

Details

The first-order support index of f(X) relative to X_i is the squared conditional expectation of its
partial derivative with respect to X_i.

The total support index of f(X) relative to X_i is the conditional expectation of its squared partial
derivative with respect to X_i.

These two functions measure the local influence of X_i, in the global space of the other input
variables. Up to square transformations, support indices can be viewed as regression curves of
partial derivatives df(X)/dX_i with respect to X_i. Estimation is performed by smoothing from the
diagonal scatterplots (X_i, df/dX_i) with the function smooth.spline{stats} with the default
options.

For the sake of comparison, support index functions may be normalized. The proposed normal-
ization is the sum of the DGSM, equal to the sum of the overall means of total support functions.
Normalized support index functions can be plotted with the S3 method plot, as well as the under-
lying diagonal scatterplots of derivatives (S3 method scatterplot).

88 support

Value

main a matrix whose columns contain the first-order support index functions, esti-
mated at Xnew.

total a matrix whose columns contain the total support index functions, estimated at
Xnew.

DGSM a vector containing an estimation of DGSM.

X ...

Xnew ...

fX ...

gradfX ... see ’arguments’ section.

Author(s)

O. Roustant

References

J. Fruth, O. Roustant, S. Kuhnt, 2018, Support indices: Measuring the effects of input variables over
their support, Reliability Engineering and System Safety, In Press, https://hal.archives-ouvertes.
fr/hal-01113555.

See Also

S3 methods plot and scatterplot: plot.support

Examples

ishigami function

n <- 5000
n.points <- 1000
d <- 3

set.seed(0)
X <- matrix(runif(d*n, min = -pi, max = pi), n, d)
Xnew <- matrix(seq(from = -pi, to = pi, length=n.points), n.points, d)

b <- support(model = ishigami.fun, X, Xnew)

plot method (x-axis in probability scale), of the normalized support index functions
plot(b, col = c("lightskyblue4", "lightskyblue1", "black"),

xprob = TRUE, p = 'punif', p.arg = list(min = -pi, max = pi), ylim = c(0, 2))

below : diagonal scatterplots of the gradient,
on which are based the estimation by smoothing
scatterplot(b, xprob = TRUE)

https://hal.archives-ouvertes.fr/hal-01113555
https://hal.archives-ouvertes.fr/hal-01113555

template.replace 89

now with normal margins

X <- matrix(rnorm(d*n), n, d)
Xnew <- matrix(rnorm(d*n.points), n.points, d)
b <- support(model = ishigami.fun, X, Xnew)

plot(b, col = c("lightskyblue4", "lightskyblue1", "black"), xprob = FALSE)
scatterplot(b, xprob = FALSE, type = "histogram", bins = 10, cex = 1, cex.lab = 1.5)

template.replace Replace Values in a Template Text

Description

template.replace replaces keys within special markups with values in a so-called template file.
Pieces of R code can be put into the markups of the template file, and are evaluated during the
replacement.

Usage

template.replace(text, replacement, eval = FALSE,
key.pattern = NULL, code.pattern = NULL)

Arguments

text vector of character strings, the template text.
replacement the list values to replace in text.
eval boolean, TRUE if the code within code.pattern has to be evaluated, FALSE oth-

erwise.
key.pattern custom pattern for key replacement (see below)
code.pattern custom pattern for code replacement (see below)

Details

In most cases, a computational code reads its inputs from a text file. A template file is like an
input file, but where some missing values, identified with generic keys, will be replaced by specific
values.

By default, the keys are enclosed into markups of the form $(KEY).

Code to be interpreted with R can be put in the template text. Pieces of code must be enclosed
into markups of the form @{CODE}. This is useful for example for formating the key values (see
example). For interpreting the code, set eval = TRUE.

Users can define custom patterns. These patterns must be perl-compatible regular expressions (see
regexpr. The default ones are:

key.pattern = "\$\\(KEY\\)"
code.pattern = "@\\{CODE\\}"

Note that special characters have to be escaped both (one for perl, one for R).

90 testmodels

Author(s)

Gilles Pujol

Examples

txt <- c("Hello $(name)!", "$(a) + $(b) = @{$(a)+$(b)}",
"pi = @{format(pi,digits=5)}")

replacement <- list(name = "world", a = 1, b = 2)
1. without code evaluation:
txt.rpl1 <- template.replace(txt, replacement)
print(txt.rpl1)
2. with code evalutation:
txt.rpl2 <- template.replace(txt, replacement, eval = TRUE)
print(txt.rpl2)

testmodels Test Models for Sensitivity Analysis

Description

These functions are standard testcase for sensitivity analysis benchmarks. For a scalar output (see
Saltelli et al. 2000, section 2.9):

• the g-function of Sobol’ with 8 inputs, X ~ U[0,1];

• the function of Ishigami with 3 inputs, X ~ U[-pi,pi];

• the function of Morris with 20 inputs, X ~ U[0,1];

• the Linkletter et al. (2006) decreasing coefficients function, X ~ U[0,1].

For functional output cases:

• the Arctangent temporal function with 2 inputs, X ~ U[-7,7] (Auder, 2011). The functional
support is on [0,2pi];

• the Cambell1D function with 4 nputs, X ~U[-1,5] (Campbell et al. 2006). The functional
support is on [-90,90].

Usage

sobol.fun(X)
ishigami.fun(X)
morris.fun(X)
atantemp.fun(X, q = 100)
campbell1D.fun(X, theta = -90:90)
linkletter.fun(X)

testmodels 91

Arguments

X a matrix (or data.frame) containing the input sample.

q for the atantemp() function: the number of discretization steps of the functional
output

theta for the campbell1D() function: the discretization steps (angles in degrees)

Value

A vector of function responses.

Author(s)

Gilles Pujol and Bertrand Iooss

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

Examples

Examples for the functional toy fonctions

atantemp function

y0 <- atantemp.fun(matrix(c(-7,0,7,-7,0,7),ncol=2))
plot(y0[1,],type="l")
apply(y0,1,lines)

n <- 100
X <- matrix(c(runif(2*n,-7,7)),ncol=2)
y <- atantemp.fun(X)
x11()
plot(y0[2,],ylim=c(-2,2),type="l")
apply(y,1,lines)

campbell1D function

N1=100 # nombre de simulations pour courbes 1D
min=-1 ; max=5
nominal=(max+min)/2

X1 = NULL ; y1 = NULL
Xnom=matrix(nominal,nr=1,nc=4)
ynom=campbell1D.fun(Xnom,theta=-90:90)
x11()
plot(ynom,ylim=c(8,30),type="l",col="red")
for (i in 1:N1){

X=matrix(runif(4,min=min,max=max),nr=1,nc=4)
rbind(X1,X)

92 truncateddistrib

y=campbell1D.fun(X,theta=-90:90)
rbind(y1,y)
lines(y)

}

truncateddistrib Truncated distributions

Description

dnorm.trunc, pnorm.trunc, qnorm.trunc and rnorm.trunc are functions for the Truncated Nor-
mal Distribution. dgumbel.trunc, pgumbel.trunc, qgumbel.trunc and rgumbel.trunc are func-
tions for the Truncated Gumbel Distribution.

Usage

dnorm.trunc(x, mean = 0, sd = 1, min = -1e6, max = 1e6)
pnorm.trunc(q, mean = 0, sd = 1, min = -1e6, max = 1e6)
qnorm.trunc(p, mean = 0, sd = 1, min = -1e6, max = 1e6)
rnorm.trunc(n, mean = 0, sd = 1, min = -1e6, max = 1e6)
dgumbel.trunc(x, loc = 0, scale = 1, min = -1e6, max = 1e6)
pgumbel.trunc(q, loc = 0, scale = 1, min = -1e6, max = 1e6)
qgumbel.trunc(p, loc = 0, scale = 1, min = -1e6, max = 1e6)
rgumbel.trunc(n, loc = 0, scale = 1, min = -1e6, max = 1e6)

Arguments

x, q vector of quantiles

p vector of probabilities

n number of observations

mean, sd means and standard deviation parameters

loc, scale location and scale parameters

min vector of minimal bound values

max vector of maximal bound values

Details

See dnorm for details on the Normal distribution. The Gumbel distribution comes from the evd
package. See dgumbel for details on the Gumbel distribution.

Value

dnorm.trunc and dgumbel.trunc give the density, pnorm and pgumbel.trunc give the distribu-
tion function, qnorm and qgumbel.trunc give the quantile function, rnorm and rgumbel.trunc
generate random deviates.

truncateddistrib 93

Author(s)

Gilles Pujol and Bertrand Iooss

Index

∗Topic IO
template.replace, 89

∗Topic design
delsa, 6
fast99, 8
morris, 10
sb, 31
shapleyPermEx, 38
shapleyPermRand, 41
sobol, 47
sobol2002, 49
sobol2007, 51
sobolEff, 53
soboljansen, 59
sobolmara, 62
sobolmartinez, 63
sobolMultOut, 66
sobolowen, 68
sobolroalhs, 71
sobolroauc, 74
sobolSalt, 76
sobolTIIlo, 79
sobolTIIpf, 81
soboltouati, 83

∗Topic methods
decoupling, 5

∗Topic misc
testmodels, 90
truncateddistrib, 92

∗Topic package
sensitivity-package, 2

∗Topic regression
pcc, 18
src, 85

∗Topic utilities
parameterSets, 16

ask (decoupling), 5
ask.sb (sb), 31
ask.sobolGP (sobolGP), 55

atantemp.fun (testmodels), 90

campbell1D.fun (testmodels), 90

decoupling, 4, 5
delsa, 3, 4, 6, 17
dgumbel.trunc (truncateddistrib), 92
dnorm.trunc (truncateddistrib), 92

fast99, 3, 8, 48, 79

identify, 11
ishigami.fun (testmodels), 90

kde, 35, 37
km, 55, 56, 58

linkletter.fun (testmodels), 90

morris, 2, 5, 10, 16
morris.fun (testmodels), 90
morrisMultOut, 4, 13, 14

par, 7
parameterSets, 4, 6–8, 16
pcc, 2, 18, 86
pgumbel.trunc (truncateddistrib), 92
PLI, 4, 19, 24
PLIquantile, 4, 20, 22
plot (plot.support), 24
plot.delsa (delsa), 6
plot.fast99 (fast99), 8
plot.morris (morris), 10
plot.pcc (pcc), 18
plot.sb (sb), 31
plot.sensiFdiv (sensiFdiv), 33
plot.sensiHSIC (sensiHSIC), 35
plot.shapleyPermEx (shapleyPermEx), 38
plot.shapleyPermRand (shapleyPermRand),

41
plot.sobol (sobol), 47

94

INDEX 95

plot.sobol2002 (sobol2002), 49
plot.sobol2007 (sobol2007), 51
plot.sobolEff (sobolEff), 53
plot.sobolGP (sobolGP), 55
plot.soboljansen (soboljansen), 59
plot.sobolmara (sobolmara), 62
plot.sobolmartinez (sobolmartinez), 63
plot.sobolMultOut (sobolMultOut), 66
plot.sobolowen (sobolowen), 68
plot.sobolroalhs (sobolroalhs), 71
plot.sobolroauc (sobolroauc), 74
plot.sobolSalt (sobolSalt), 76
plot.sobolTIIlo (sobolTIIlo), 79
plot.sobolTIIpf (sobolTIIpf), 81
plot.soboltouati (soboltouati), 83
plot.src (src), 85
plot.support, 24, 88
plot3d.morris (morris), 10
plotFG (sobolTIIpf), 81
plotFG.sobolTIIlo (sobolTIIlo), 79
pnorm.trunc (truncateddistrib), 92
PoincareConstant, 3, 4, 26, 30
PoincareOptimal, 3, 4, 26, 28, 29
print.delsa (delsa), 6
print.fast99 (fast99), 8
print.morris (morris), 10
print.pcc (pcc), 18
print.sb (sb), 31
print.sensiFdiv (sensiFdiv), 33
print.sensiHSIC (sensiHSIC), 35
print.shapleyPermEx (shapleyPermEx), 38
print.shapleyPermRand

(shapleyPermRand), 41
print.sobol (sobol), 47
print.sobol2002 (sobol2002), 49
print.sobol2007 (sobol2007), 51
print.sobolEff (sobolEff), 53
print.sobolGP (sobolGP), 55
print.soboljansen (soboljansen), 59
print.sobolmara (sobolmara), 62
print.sobolmartinez (sobolmartinez), 63
print.sobolMultOut (sobolMultOut), 66
print.sobolowen (sobolowen), 68
print.sobolroalhs (sobolroalhs), 71
print.sobolroauc (sobolroauc), 74
print.sobolSalt (sobolSalt), 76
print.sobolTIIlo (sobolTIIlo), 79
print.sobolTIIpf (sobolTIIpf), 81

print.soboltouati (soboltouati), 83
print.src (src), 85

qgumbel.trunc (truncateddistrib), 92
qnorm.trunc (truncateddistrib), 92

regexpr, 89
rgumbel.trunc (truncateddistrib), 92
rnorm.trunc (truncateddistrib), 92

sb, 2, 5, 31
scatterplot (plot.support), 24
sensiFdiv, 4, 33, 37
sensiHSIC, 4, 35, 35
sensitivity, 8
sensitivity (sensitivity-package), 2
sensitivity-package, 2
shapleyPermEx, 3, 4, 38, 43
shapleyPermRand, 3, 4, 40, 41
sobol, 3, 47, 50, 52, 54, 58, 61, 63, 65, 67, 70,

78, 84
sobol.fun (testmodels), 90
sobol2002, 3, 48, 49, 52, 54, 58, 61, 63, 65,

67, 70, 79, 84
sobol2007, 3, 48, 50, 51, 54, 58, 61, 63, 65,

67, 70, 78, 79, 84
sobolEff, 3, 48, 50, 52, 53, 58, 61, 63, 65, 70,

78, 79, 84
sobolGP, 3, 4, 48, 50, 55, 67, 70, 79
soboljansen, 3, 48, 50, 52, 54, 58, 59, 63, 65,

67, 70, 78, 79, 84
sobolmara, 3, 48, 50, 52, 61, 62, 65, 67, 70,

73, 76, 79, 84
sobolmartinez, 3, 48, 50, 52, 54, 61, 63, 63,

70, 78, 79, 84
sobolMultOut, 4, 48, 50, 52, 58, 61, 63, 65,

66, 73, 79
sobolowen, 3, 4, 68
sobolroalhs, 3, 4, 48, 63, 71, 76, 79
sobolroauc, 3, 4, 73, 74
sobolSalt, 3, 4, 48, 50, 52, 54, 61, 63, 65, 70,

76, 84
sobolSmthSpl, 3, 4, 48, 54, 78
sobolTIIlo, 3, 4, 79, 82
sobolTIIpf, 3, 4, 80, 81
soboltouati, 3, 4, 65, 83
src, 2, 5, 19, 85
support, 3, 4, 26, 87

tell (decoupling), 5

96 INDEX

tell.delsa (delsa), 6
tell.fast99 (fast99), 8
tell.morris (morris), 10
tell.morrisMultOut (morrisMultOut), 14
tell.sb (sb), 31
tell.sensiFdiv (sensiFdiv), 33
tell.sensiHSIC (sensiHSIC), 35
tell.shapleyPermEx (shapleyPermEx), 38
tell.shapleyPermRand (shapleyPermRand),

41
tell.sobol (sobol), 47
tell.sobol2002 (sobol2002), 49
tell.sobol2007 (sobol2007), 51
tell.sobolEff (sobolEff), 53
tell.sobolGP (sobolGP), 55
tell.soboljansen (soboljansen), 59
tell.sobolmara (sobolmara), 62
tell.sobolmartinez (sobolmartinez), 63
tell.sobolowen (sobolowen), 68
tell.sobolroalhs (sobolroalhs), 71
tell.sobolroauc (sobolroauc), 74
tell.sobolSalt (sobolSalt), 76
tell.sobolTIIlo (sobolTIIlo), 79
tell.sobolTIIpf (sobolTIIpf), 81
tell.soboltouati (soboltouati), 83
template.replace, 4, 89
testmodels, 4, 90
truncateddistrib, 4, 92

	sensitivity-package
	decoupling
	delsa
	fast99
	morris
	morrisMultOut
	parameterSets
	pcc
	PLI
	PLIquantile
	plot.support
	PoincareConstant
	PoincareOptimal
	sb
	sensiFdiv
	sensiHSIC
	shapleyPermEx
	shapleyPermRand
	sobol
	sobol2002
	sobol2007
	sobolEff
	sobolGP
	soboljansen
	sobolmara
	sobolmartinez
	sobolMultOut
	sobolowen
	sobolroalhs
	sobolroauc
	sobolSalt
	sobolSmthSpl
	sobolTIIlo
	sobolTIIpf
	soboltouati
	src
	support
	template.replace
	testmodels
	truncateddistrib
	Index

