DWARF Debugging Information Format

UNIX International
Programming Languages SIG
Revision: 2.0.0 (July 27, 1993)

Industry Reviav Draft

Published by:

UNIX International
Waterview Corporate Center
20 Waterviev Boulevard
Pasippary, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1201-263-8400
Fax: +1201-263-8401

Copyright © 1992, 1993 NIX International, Inc.

Permission to use, cgpmodify, and distribute this documentation foryapurpose and without fee is
hereby granted, provided that the ebaopyright notice appears in all copies and that both thayragipt

notice and this permission notice appear in supporting documentation, and that thenmamméethational

not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission.UNIX International makes no representations about the suitability of this documentation
for ary purpose. lis provided "as is" without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. INNO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL BMAGES OR ANY DAMAGES WHATSOEVER RESULING
FROM LOSS OF USE, BTA OR PROFITS, WHETHER IN AN ACTION OF CONTRHN,
NEGLIGENCE OR OTHER DRTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS DOCUMERNTION.

NOTICE:

UNIX International is making this documentatioveilable as a reference point for the industiyhile

UNIX International beliees that this specification is well defined in this first release of the document, minor
changes may be made prior to products meeting this specification beingvaitad#eafrom WNIX System
Laboratories or Nix International members.

Trademarks:

Intel386 is a trademark of Intel Corporation.
UNIX® is a regstered trademark of iUx System Laboratories in the United States and other countries.

Industry Reviav Draft

Programming Languages SIG

\Lix \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \Lix \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9

Revision: 2.0.0 Page 1 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

FOREWORD

This document specifies the second generation of symboligdety information based on the
DWARF format that has been d#oped by the WX International Programming Languages
Special Interest Group (SIG). It is being circulated for industvjeve The first version of the
DWAREF specification was published byl International in Januarg992. Thecurrent \ersion
adds significant ve functionality but its main thrust is to achie a nuch denser encoding of the
DWAREF information. Because of thewencoding, DVARF Version 2 is not binary compatible
with DWARF Version 1.

At this point, the SIG belies that this document sufficiently supports the debugging needs of C,
C++, FORTRAN 77, Fortran90, Modula2 andseal, and we ka released it for public
comment. V& will accept comments on this document until September 30, 1@&Mmments
may be directed via email to the SIG mailing list (plsig@ugi.oif you are unable to send email,
paper mail, FAX, or machine readable gam UNIX, MS-DOS, or Macintosh compatible media
can be sent to \X International at the address listed belend will be forwarded to the SIG.

UNIX International
Waterview Corporate Center
20 Waterviev Boulevard
Pasippary, NJ 07054
Phone: +1201-263-8400
Fax: +1201-263-8401

Revision: 2.0.0 Page 2 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

1. INTRODUCTION

This document defines the format for the information generated by compilers, assemblers and
linkage editors that is necessary for symbolic, soured-lelebugging. The debugging
information format does noa¥a the design of ancompiler or debgger Instead, the goal is to
create a method of communicating an accurate picture of the source progranuétLgyger in a

form that is economically extensible to different languages while retaining badkw
compatibility.

The design of the debugging information format is open-ended, allowing for the addition of ne
delugging information to accommodatewnéanguages or debugger capabilities while remaining
compatible with other languages or different debuggers.

1.1 Pumose and Scope

The delngging information format described in this document is designed to meet the symbolic,
source-lgel debugging needs of different languages in a unified fashion by requiring language
independent debugging information wheerepossible. Indiidual needs, such as C++ virtual
functions or Brtran common blocks are accommodated by creating attributes that are used only
for those languages. TheNX International Programming Languages SIG belethat this
document sufficiently a@rs the debgging information needs of C, C++, FORAN77,
Fortran90, Modula2 and Pascal.

This document describesWARF Version 2, the second generation of wghng information
based on the WARF format. While DVARF Version 2 preides n&v delugging information not
available in Version 1, the primary focus of the changes #sign 2 is the representation of the
information, rather than the information content itself. The basic structure of étmoly 2
format remains as in Version 1: the debugging information is represented as a serieggihdeb
information entries, each containing one or more aiteib (hame/value pairs). The Version 2
representation, leever, is much more compact than the Version 1 representation. In some cases,
this greater density has been aghikat he expense of additional complexity or greatefialifty

in producing and processing th&BRF information. We telieve that the reduction in 1/O and in
memory paging should more than realp or ary increase in processing time.

Because the representation of information has changed from Version 1 to Versiersign \2
DWAREF information is not binary compatible with Version 1 informatidim. make it easier for
consumers to support botheidsion 1 and Version 2 WARF information, the Version 2
information has been med to a dfferent object file sectiondebug_info

The intended audience for this document are tlvelalgers of both producers and consumers of
delugging information, typically language compilers, dgbers and other tools that need to
interpret a binary program in terms of its original source.

1.2 Owrview

There are tw major pieces to the description of th&®MBRF format in this document. The first
piece is the informational content of the debugging entries. The second piece iaythiew
debugging information is encoded and represented in an object file.

The informational content is described in sections trough six. Section tw describes the
overall structure of the information and attuiles that are common to myaor dl of the different
dehugging information entries. Sections three, four ane figscribe the specific degging
information entries and ko they communicate the necessary information about the source

Revision: 2.0.0 Page 3 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

program to a delgger Section six describes defging information contained outside of the
delugging information entries, themseb: Theencoding of the WARF information is
presented in section\sm.

Section eight describes some future directions for WA RF specification.

In the following sections, text in normal font describes required aspects oMARD format.
Tex in italics is explanatory or supplementary material, and not part of the format definition
itself.

1.3 \endor Extensibility

This document does not attempt tove@oall interesting languages owven to wver al of the
interesting debgging information needs for its primary target languages (C, C++TRBR77,
Fortran90, Modula2, &scal). Thereforthe document provides vendors a way to define thair o
dehugging information tags, attuibes, base type encodings, location operations, language names,
calling cowventions and call frame instructions by reserving a portion of the name spacalidnd v
values for these constructs for vendor specific additidghsture versions of this document will

not use names or values reserved for vendor specific additions. All nameswsesinot reseed

for vendor additions, hwever, are reserved for future versions of this document. See section 7
for details.

1.4 Changedrom Version 1

The following is a list of the major changes made to tNgAIRF Debugging Informationd¥mat
since Version 1 of the format was published (January 20, 19B#29. list is not meant to be
exhaustve.

+ Delugging information entries ka been moed from the.debug to the.debug_info
section of an object file.

« The tag, attribte names and attribute forms encodingsehbeen meed out of the
debugging information itself to a separate abbreviations table.

« Explicit sibling pointers hee been made optional. Each entrywngpecifies (through the
abbreviations table) whether or not it has children.

+ New more compact attribute forms V& been added, including a variable length constant
data form. Attribute values may wdaveary form within a gven dass of forms.

 Location descriptions wva keen replaced by a we more compact and morexgressie
format. Thereis nov a way of epressing multiple locations for an object whose location
changes during its lifetime.

» There is a ne@ format for line number information that provides information for code
contributed to a compilation unit from an included file. Line number informationusino
the.debug_line section of an object file.

« The representation of the type of a declaration has baemked.
« A new ction provides an encoding for pre-processor macro information.

« Delugging information entries mo provide for the representation of non-defining
declarations of objects, functions or types.

« More complete support for Modula2 and Pascal has been added.

Revision: 2.0.0 Page 4 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

« There is nav a way of describing locations for segmented address spaces.

A new fction provides an encoding for information about call frameatictns.

« The representation of enumeration and array types has beerked so that WARF
presents only a single way of representing lists of items.

» Support has been added for C++ templates and exceptions.

Revision: 2.0.0 Page 5 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 6 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

2. GENERAL DESCRIPTION
2.1 TheDebugging Information Entry

DWARF uses a series of daiging information entries to define aMdevel representation of a
source program. Each debugging information entry is described by an identifying tag and
contains a series of attutes. Thetag specifies the class to which an entry belongs, and the
attributes define the specific characteristics of the entry.

The set of required tag names is listed in FigureThe debugging information entries the
identify are described in sections three, four and five.

The debugging information entries iINnWARF \ersion 2 are intended to exist in the
.debug_info section of an object file.

DW_TAG_access_declaration
DW_TAG_base_type
DW_TAG_class_type
DW_TAG_common_inclusion
DW_TAG_const_type
DW_TAG_entry point
DW_TAG_enumerator
DW_TAG_formal_parameter
DW_TAG_imported_declaration
DW_TAG_inlined_subroutine
DW_TAG_lexical_block
DW_TAG_module
DW_TAG_namelist_item
DW_TAG_pointer_type
DW_TAG_reference_type
DW_TAG_string_type
DW_TAG_subprogram
DW_TAG_subroutine_type
DW_TAG_template value param
DW_TAG_try block
DW_TAG_union_type
DW_TAG_variable
DW_TAG_variant_part
DW_TAG_with_stmt

DW_TAG_array_type
DW_TAG_catch_block
DW_TAG_common_block
DW_TAG_compile_unit
DW_TAG_constant
DW_TAG_enumeration_type
DW_TAG file_type
DW_TAG_friend
DW_TAG_inheritance
DW_TAG_label
DW_TAG_member
DW_TAG_namelist
DW_TAG_packed_type
DW_TAG_ptr_to_member_type
DW_TAG_set_type
DW_TAG_structure_type
DW_TAG_subrange_type
DW_TAG_template_type_param
DW_TAG_thrown_type
DW_TAG_typedef
DW_TAG_unspecified_parameters
DW_TAG_variant
DW_TAG_volatile_type

2.2 Attrib ute Types

Figure 2.

Figure 1L Tag names

Each attribute value is characterized by an attribute name. The set of attribute names is listed in

The permissible values for an attribute belong to one or more

clafssiisbute value forms. Each form class may be represented in one or more
ways. For instance, some attribute values consist of a single piece
of constant data. “Constant data” is the class of attribute value
that those attributes may have. There are several representations

Revision: 2.0.0 Page 7

Industry Reviav Draft

July 27, 1993

DWARF Debugging Information Format

DW_AT abstract_origin
DW_AT_ address_class
DW_AT_ base_types
DW_AT _bit_size
DW_AT_calling_convention
DW_AT_ comp_dir

DW_AT _containing_type
DW_AT data_member_location
DW_AT decl file
DW_AT_declaration
DW_AT_discr

DW_AT discr_value
DW_AT external

DW_AT friend

DW_AT identifier_case
DW_AT inline
DW_AT_language

DW_AT low_pc
DW_AT_macro_info
DW_AT namelist_item
DW_AT _priority
DW_AT_prototyped
DW_AT_segment

DW_AT _specification
DW_AT _static_link

DW_AT stride_size
DW_AT _type

DW_AT use_location
DW_AT _virtuality

DW_AT vtable elem_location

Figure 2 Attribute names

of constant data, however (one, two, four, eight bytes and variable
length data). The particular representation for any given instance
of an attribute is encoded along with the attribute name as part

of the information that guides the interpretation of a debugging
information entry. Attribute value forms may belong

to one of the following classes.

address Refers to some location in the address space of the described program.
block An arbitrary number of uninterpreted bytes of data.
constant One, two, four or eight bytes of uninterpreted data, or data encoded
in the variable length format known as LEB128 (see section 7.6).
flag A small constant that indicates the presence or absence of an attribute.
reference Refers to some member of the set of debugging information entries that describe

the program. There are two types of reference. The first is an
offset relative to the beginning of the compilation unit in

D\

DV

—_—e— 1)

DV

Revision: 2.0.0 Page 8 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

which the reference occurs and must refer to an entry within
that same compilation unit. The second type of reference

is the address of any debugging information entry within

the same executable or shared object; it may refer to an entry
in a different compilation unit from the unit containing the
reference.

string A null-terminated sequence of zero or more (hon-null) bytes.
Data in this form are generally printable strings. Strings
may be represented directly in the debugging information entry
or as an offset in a separate string table.

There are no limitations on the ordering of attributes within a debugging
information entry, but to prevent ambiguity,

no more than one attribute with a given name may appear in any debugging
information entry.

2.3 Relationshipof Debugging Information Entries

A variety of needs can be met by permitting a single debugging

information entry to “own” an arbitrary number of other debugging

entries and by permitting the same debugging information entry to be

one of many owned by another debugging information entry.

This makes it possible to describe, for example,

the static block structure within

a source file, show the members of a structure, union, or class, and associate
declarations with source files or source files with shared objects.

The ownership relation

of debugging information entries is achieved naturally

because the debugging information is represented as a tree.

The nodes of the tree are the debugging information entries
themselves. The child entries of any node are exactly those
debugging information entries owned by that node. 3

The tree itself is represented by flattening it in prefix

order. Each debugging information entry

is defined either to have child entries or not to have child entries

(see section 7.5.3).

If an entry is defined not to have children, the next physically

succeeding entry is the sibling of the prior entry. If an entry

is defined to have children, the next physically succeeding entry

is the first child of the prior entry. Additional children of the parent

entry are represented as siblings of the first child. A chain
of sibling entries is terminated by a null entry.

In cases where a producer of debugging information

feels that it will be important for consumers of that information
to quickly scan chains of sibling entries, ignoring the children
of individual siblings, that producer may attach an

Revisidfhilz. ;i@ ownership relation of the debuggir@agéogmation July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

AT_sibling
attribute to any debugging information entry. The value of
this attribute is a reference to the sibling entry of the
entry to which the attribute is attached.

2.4 LocationDescriptions

The debugging information must provide consumers a way to find the location
of program variables, determine the bounds of dynamic arrays and strings
and possibly to find the base address of a subroutine’s stack frame or

the return address of a subroutine. Furthermore, to meet the needs

of recent computer architectures and optimization techniques, the debugging
information must be able to describe the location of an object

whose location changes over the object’s lifetime.

Information about the location of program objects is provided by
location descriptions. Location
descriptions can be either of two forms:

1. Location expressionsvhich are a language independent representation of
addressing rules
of arbitrary complexity built from a few basic
building blocks, or operations T hey are sufficient for describing
the location of any object as long as its lifetime is either static
or the same as the lexical block that owns it, and it does not move throughout
its lifetime.

2. Location lists which are used to describe objects that
have a limited lifetime or change their location throughout their
lifetime. Location lists are more completely described below.

The two forms are distinguished in a context sensitive manner. As the value
of an attribute, a location expression is

encoded as a block and a location list is encoded as a constant offset into

a | ocation list table.

Note: The Version 1 concept of "location descriptions" was replaced in Version 2
with this new abstraction because it is denser and more descriptive.

2.4.1 LocationExpressions

A | ocation expression consists of zero or more location operations.

An expression with zero operations

is used to denote an object that is

present in the source code but not present in the object code

(perhaps because of optimization).

The location operations fall into two categories, register names and
addressing operations. Register names always appear alone and indicate
that the referred object is contained inside a particular

register. Addressing operations are memory address computation
rules. All location operations are encoded as a stream of opcodes that
are each followed by zero or more literal operands. The number of operands
is determined by the opcode.

Revision: 2.0.0 Page 10 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

2.4.2 RegisteName Operators
The following operations can be used to name a register.

Note that the

register number represents a DWARF specific mapping of numbers onto
the actual registers of a given architecture.

The mapping should be chosen to gain optimal density and

should be shared by all users of a given architecture.
The Programming Languages SIG recommends
that this mapping be defined by the ABI

authoring committee for each

architecture.

1. DW_OP_regQ DW_OP _req] ..,DW_OP_reg31
The
DW_OP_rem
operations encode the names of up to 32 registers, numbered from
0 t hrough 31, inclusive. The object addressed is in register n.

2. DW_OP_regx
The
DW_OP_regx
operation has a single unsigned LEB128 literal operand that encodes the
name of a register.

4

2.4.3 Addressing Operations

Each addressing operation represents a postfix operation on a simple stack
machine. Each element of the stack is the size of an

address on the target machine.

The value on the top of the stack after

“executing” the location expression is taken to be the result (the address

of the object, or the value of the array bound, or the length of a

dynamic string). In the case of locations used for structure members,

the computation assumes that the base address of the containing structure
has been pushed on the stack before evaluation of the addressing operation.

2.4.3.1 LiteralEncodings
The following operations all push a value onto the addressing stack.

1. DW_OP_lit0 , DW_OP_lit1 , ...,DW_OP_lit31
The
DW_OP_lit n operations encode the unsigned
literal values from 0 through 31, inclusive.

2. DW_OP_addr
The
DW_OP_addr
operation has a single operand that encodes a
machine address and whose size is the size of an address on the

RevisiByst2r0.9 Application Binary Interface onsigfiggeol the generic July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

target machine.

3. DW_OP_constlu
The single operand of the
DW_OP_constlu

operation provides a 1-byte unsigned integer constant.

4. DW_OP_constls
The single operand of the
DW_OP_constls
operation provides a
1-byte signed integer constant.

5. DW_OP_const2u
The single operand of the
DW_OP_const2u
operation provides a
2-byte unsigned integer constant.

6. DW_OP_const2s
The single operand of the
DW_OP_const2s
operation provides a
2-byte signed integer constant.

7. DW_OP_const4u
The single operand of the
DW_OP_const4u
operation provides a
4-byte unsigned integer constant.

8. DW_OP_const4s
The single operand of the
DW_OP_const4s
operation provides a
4-byte signed integer constant.

9. DW_OP_const8u
The single operand of the
DW_OP_const8u
operation provides an
8-byte unsigned integer constant.

10. DW_OP_const8s

The single operand of the
DW_OP_const8s

operation provides an

8-byte signed integer constant.

11. DW_OP_constu

The single operand of the
DW_OP_constu

operation provides an

unsigned LEB128 integer constant.

Revision: 2.0.0

Industry Reviav Draft

Page 12

July 27, 1993

Programming Languages SIG

12. DW_OP_consts

The single operand of the
DW_OP_consts

operation provides a

signed LEB128 integer constant.

2.4.3.2 RegisteBased Addressing

The following operations push a value onto the stack that
is the result of adding the contents of a register with
a given signed offset.

1. DW_OP_fbreg
The
DW_OP_fbreg
operation provides a signed LEB128 offset from the address specified
by the location descriptor in the
DW_AT frame_base
attribute of the current

function. (This is typically a "stdcpointer” regster
plus or minus some
offset. On more sophisticated systems it might be a location list that

adjusts the offset according to changes in the stack pointer as
the PC changes.)

2. DW_OP_bregd DW_OP_bregy, ..., DW_OP_breg31
The single operand of the
DW_OP_brem
operations provides a signed LEB128 offset from the specified register.

3. DW_OP_bregx
The
DW_OP_bregx
operation has two operands: a signed LEB128 offset from the specified register
which is defined with an unsigned LEB128 number.

2.4.3.3 StaclkOperations

The following operations

manipulate the “location stack.”

Location operations that index the location stack assume that
the top of the stack (most recently added entry) has index 0.

1. DW_OP_dup
The
DW_OP_dup
operation duplicates the value at the top of the location stack.

2. DW_OP_drop
The
DW_OP_drop
operation pops the value at the top of the stack.

Revision: 2.0.0 Page 13 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

3. DW_OP_pick
The single operand of the
DW_OP_pick
operation provides a 1-byte index. The stack entry with the specified index
(O through 255, inclusive) is pushed on the stack.

4. DW_OP_over
The
DW_OP_over
operation duplicates the entry currently second in the stack
at the top of the stack. This is equivalent to an
DW_OP_pick
operation, with index 1.

5. DW_OP_swap
The
DW_OP_swap
operation swaps the top two stack entries. The entry at
the top of the stack becomes the second stack entry, and
the second entry becomes the top of the stack.

6. DW_OP_rot
The
DW_OP_rot
operation rotates the first three stack entries. The entry at
the top of the stack becomes the third stack entry, the second entry
becomes the top of the stack, and the third entry becomes the second
entry.

7. DW_OP_deref
The
DW_OP_deref
operation pops the top stack entry and treats it as an address.
The value retrieved from that address is pushed. The size of the
data retrieved from the dereferenced address is the size of an address
on the target machine.

8. DW_OP_deref _size
The
DW_OP_deref_size
operation behaves like the
DW_OP_deref
operation: it
pops the top stack entry and treats it as an address.
The value retrieved from that address is pushed.
In the
DW_OP_deref_size
operation, however,
the size in bytes of the
data retrieved from the dereferenced address is specified by the
single operand. This operand is a 1-byte unsigned integral constant

Revision: 2.0.0 Page 14 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

whose value may not be larger than the size of an address on

the target machine. The data retrieved is zero extended to the size
of an address on the target machine before being pushed on

the expression stack.

9. DW_OP_xderef

The
DW_OP_xderef

operation provides an extended dereference mechanism. The entry at the
top of the stack is treated as an address. The second stack entry
is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements
are popped, a data item is retrieved through an implementation-defined
address calculation and pushed as the new stack top. The size of the
data retrieved from the dereferenced address is the size of an address
on the target machine.

10. DW_OP_xderef_size
The
DW_OP_xderef_size
operation behaves like the
DW_OP_xderef
operation: the entry at the
top of the stack is treated as an address. The second stack entry
is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements
are popped, a data item is retrieved through an implementation-defined
address calculation and pushed as the new stack top.
In the
DW_OP_xderef_size
operation, however,
the size in bytes of the
data retrieved from the dereferenced address is specified by the
single operand. This operand is a 1-byte unsigned integral constant
whose value may not be larger than the size of an address on
the target machine. The data retrieved is zero extended to the size
of an address on the target machine before being pushed on
the expression stack.

2.4.3.4 Arithmeticand Logical Operations

The following provide arithmetic and logical operations.

The arithmetic operations perform “addressing arithmetic,”

that is, unsigned arithmetic that wraps on an address-sized

boundary. The operations do not cause an exception on overflow.

1. DW_OP_abs
The
DW_OP_abs
operation pops the top stack entry and pushes its absolute value.

Revision: 2.0.0 Page 15 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

2. DW_OP_and
The
DW_OP_and
operation pops the top two stack values, performs a bitwise and
operation on the two, and pushes the result.

3. DW_OP_div
The
DW_OP_div
operation pops the top two stack values, divides the former second entry
by the former top of the stack
using signed division,
and pushes the result.

4. DW_OP_minus
The
DW_OP_minus
operation pops the top two stack values, subtracts the former top of the stack
from the former second entry, and pushes the result.

5. DW_OP_mod
The
DW_OP_mod
operation pops the top two stack values and pushes the result of the
calculation: former second stack entry modulo the former top of the
stack.

6. DW_OP_mul
The
DW_OP_mul
operation pops the top two stack entries, multiplies them together,
and pushes the result.

7. DW_OP_neg
The
DW_OP_neg
operation pops the top stack entry, and pushes its negation.

8. DW_OP_not
The
DW_OP_not
operation pops the top stack entry, and pushes its bitwise complement.

9. DW_OP_or
The
DW_OP_or
operation pops the top two stack entries, performs a bitwise or
operation on the two, and pushes the result.

10. DW_OP_plus
The
DW_OP_plus
operation pops the top two stack entries, adds them together,

Revision: 2.0.0 Page 16 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

and pushes the result.

11. DW_OP_plus_uconst
The
DW_OP_plus_uconst
operation pops the top stack entry, adds it to the unsigned LEB128
constant operand and pushes the result.
This operation is supplied specifically to be able to encode more field
offsets in two bytes than can be done with "DW_OP_it n DW_OP_add".

12. DW_OP_shl
The
DW_OP_shl
operation pops the top two stack entries, shifts the former second
entry left by the number of bits specified by the former top of
the stack, and pushes the result.

13. DW_OP_shr
The
DW_OP_shr
operation pops the top two stack entries, shifts the former second
entry right (logically) by the number of bits specified by the former top of
the stack, and pushes the result.

14. DW_OP_shra
The
DW_OP_shra
operation pops the top two stack entries, shifts the former second
entry right (arithmetically) by the number of bits specified by the former top of
the stack, and pushes the result.

15. DW_OP_xor
The
DW_OP_xor
operation pops the top two stack entries, performs the logical
exclusive-or operation on the two, and pushes the result.

2.4.3.5 Contol Flow Operations

The following operations provide simple control of the flow of a location
expression.

1. Relational operators

The six relational operators each pops the top two stack values,
compares the former top of the stack with the former second entry,
and pushes the constant value 1 onto the stack if the result of the
operation is true or the constant value 0 if the result of the operation
is false. The comparisons are done as signed operations. The six
operators are

DW_OP_le
(less than or equal to),

DW_OP_ge
(greater than or equal to),

Revision: 2.0.0 Page 17 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_OP_eq

(equal to),
DW_OP_lIt

(less than),
DW_OP_gt

(greater than) and
DW_OP_ne

(not equal to).

2. DW_OP_skip
DW_OP_skip
is an unconditional branch. Its
single operand is a 2-byte signed integer constant.
The 2-byte constant is the number of bytes of the location
expression to skip from the current operation, beginning after the
2-byte constant.

3. DW_OP_bra
DW_OP_bra
is a conditional branch. Its
single operand is a 2-byte signed integer constant.
This operation pops the top of stack. If the value
popped is not the constant 0, the 2-byte constant operand is the number
of bytes of the location
expression to skip from the current operation, beginning after the
2-byte constant.

2.4.3.6 SpeciaDperations
There are two special operations currently defined:

1. DW_OP_piece
Many compilers store a single variable in sets of registers, or store
a variable partially in memory and patrtially in registers.
DW_OP_piece
provides a way of describing how large a part of a variable
a particular addressing expression refers to.

DW_OP_piece
takes a single argument which is an unsigned LEB128 number. The number
describes the size in bytes of the piece of the object referenced
by the addressing expression whose result is at the top of
the stack.

2. DW_OP_nop
The
DW_OP_nop
operation is a place holder. It has no effect on the location stack or
any of its values.

2.4.4 SampleStack Operations

The stack operations defined in section 2.4.3.3 are fairly

Revision: 2.0.0 Page 18 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

conventional, but the following examples illustrate their behavior
graphically.

box expand center tab(;);

2.4.5 ExampleLocation Expressions

The addressing expression represented by a location expression,
if evaluated, generates the

runtime address of the value of a symbol exceptenther
DW_OP_req,

or

DW_OP_regx

operations ag used.

Here are ome examples of how location operations aged to form location
expressions:

Revision: 2.0.0 Page 19 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_OP_reg3
The value is inaggster 3.

DW_OP_regx 54
The value is inggster 54.

DW_OP_addr 0x80d0045c
The value of a static variable is
at machine address 0x80d0045c.

DW_OP_bregll 44
Add 44 to the value in
register 11 to get the address of an
automatic variable instance.

DW_OP_fbreg -50
Given anDW_AT frame_base value of
"OPBREG31 64" this example
computes the address of a local variable
that is -50 bytes from a logical frame
pointer that is computed by adding
64 to the current st&cpointer (regster 31).

DW_OP_bregx 54 32 DW_OP_deref
A call-by-reference parameter
whose address is in the
word 32 bytes from whey regster
54 points.

DW_OP_plus_uconst 4
A dructure member is four bytes
from the start of the structure
instance The base address is
assumed to be already on the stack.

DW_OP_reg3 DW_OP_piece 4 DW_OP_regl0 DW_OP_piece 2
A variable whose first four bytes reside
in regster 3 and whose next two bytes
reside in egster 10.

2.4.6 LocationLists

Location lists are used in place of location expressions wkene
the object whose location is being described can change location
during its lifetime. Location lists are contained in a separate
object file section called

.debug_loc.

A location list is indicated by a location

attribute whose value is represented as a

constant offset from the beginning of the

Revision: 2.0.0 Page 20
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

.debug_loc
section to the first byte of the list for the object in question.

Each entry in a location list consists of:

1. Abeginning address. This address is reéath the base address
of the compilation unit referencing this location list. It marks
the beginning of the address rangeravhich the location is valid.

2. Anending address, again relegito the base address
of the compilation unit referencing this location list. It marks
the first address past the end of the address ramege o
which the location is valid.

3. Alocation expression describing the location of the objeatthe
range specified by the beginning and end addresses.

Address ranges mayerlap. Whenthey do, they describe a situation
in which an object exists simultaneously in more than one place.
If all of the address ranges

in a given location list do not collectely cover the entire

range @er which the object in question is defined, it is assumed
that the object is nowailable for the portion of the range that is not
covered.

The end of apgiven location list is marked by a 0 for the beginning
address and a 0 for the end address; no location description is present.
A location list containing

only such a 0 entry describes an object that exists in the source

code but not in thexecutable program.

2.5 Types of Declarations

Any debugging information entry describing a declaration that
has a type has a

DW_AT type

attribute, whose value is a reference to another debugging
information entry The entry referenced may describe

a base type, that is, a type that is not defined in terms

of other data types, or it may describe a user-defined type,
such as an arragtructure or enumeration. Alternady,

the entry referenced may describe a type modifier: constant,
packed, pointerreference or volatile, which in turn will reference
another entry describing a type or type modifier (using a
DW_AT type

attribute of its an). Seesection 5 for descriptions of

the entries describing base types, user-defined types and
type modifiers.

2.6 Accessibilityof Declarations

Some languges, notably C++ and Ada, have the concept of

the accessibility of an object or of some othergmm antity.

The accessibility specifies whidasses of other pgram djects

are permitted access to the object in question.

Revision: 2.0.0 Page 21 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

The accessibility of a declaration is represented by a
DW_AT_accessibility

attribute, whose value is a constant drawn from the set of codes
listed in Figure 3.

DW_ACCESS_public
DW_ACCESS private
DW_ACCESS_protected

Figure 3 Accessibility codes

2.7 Msibility of Declarations

Modula2 has the concept of the visibility of a declaration.
The visibility specifies whicdeclarations ae to be isible outside
of the module in whitthey are declared.

The visibility of a declaration is represented by a

DW_AT visibility

attribute, whose value is a constant drawn from the set of codes
listed in Figure 4.

DW_VIS_local
DW_VIS_exported
DW_VIS_qualified

Figure 4. Visibility codes

2.8 \rtuality of Declarations

C++ provides for virtual and pue virtual structure or dass
member functions and for virtual base classes.

The virtuality of a declaration is represented by a

DW_AT _virtuality

attribute, whose value is a constant drawn from the set of codes
listed in Figure 5.

DW_VIRTUALITY_none
DW_VIRTUALITY_virtual
DW_VIRTUALITY_ pure_virtual

Figure 5 Virtuality codes

2.9 Artificial Entries

A compiler may wish to generate debugging information entries

for objects or types that werot actually declared

in the source of the application. An example is a formal parameter
entry to represent the hidden

this

parameter that most C++ implementations pass as the first argument
to non-static member functions.

Any debugging information entry representing the declaration of an

Revision: 2.0.0 Page 22
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

object or type artificially generated by a compiler and
not explicitly declared by the source program mayeha
DW_AT _artificial

attribute. Thevalue of this attribute is a flag.

2.10 Target-Specific Addressing Information

In some systems, addresses secified as offsets within a given
segment rather than as locations within a single flat address space.

Any debugging information entry that contains a description of the
location of an object or subroutine maywéa

DW_AT_segment

attribute, whose value is a location description. The description
evduates to the segment value of the item being described. If
the entry containing the

DW_AT_segment

attribute has a

DW_AT low_pc

or

DW_AT high_pc

attribute, or a location description thatleiates to an address,
then those values represent the offset portion of the address
within the segment specified by

DW_AT_segment

If an entry has no

DW_AT_segment

attribute, it inherits the segment value from its parent entry.
If none of the entries in the chain of parents for this entry
back to its containing compilation unit entrya
DW_AT_segment

attributes, then the entry is assumed to exist within a flat
address space. Similariythe entry has a
DW_AT_segment

attribute containing an empty location description, that entry
is assumed to exist within a flat address space.

Some systems support different classes ofeadds. Thaddress
class may affect the way a pointer is dereferenced or the way
a subroutine is called.

Any debugging information entry representing a pointer or reference
type or a subroutine or subroutine type mayeha
DW_AT_address_class

attribute, whose value is a constant. The set of permissible

values is specific to each target architecture. The value
DW_ADDR_nong

however, is common to all encodings, and means that no address class
has been specified.

For example the Intel386™ processor might use the following
values:

Revision: 2.0.0 Page 23 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Name \dlue Meaning

DW_ADDR_none 0 no class specified
DW_ADDR_nearl6 1 16-bit offset, no segment
DW_ADDR farl6 2 16-bit offset, 16-bit segment
DW_ADDR_hugel6 3 16-bit offset, 16-bit segment
DW_ADDR near32 4 32-bit offset, no segment
DW_ADDR_far32 5 32-bit offset, 16-bit segment

Figure 6 Example address class codes

2.11 Non-DefiningDeclarations

A debugging information entry representing a program object or type
typically represents the defining declaration of that object or type. In
certain contexts, hower, a cebugger might need information about a
declaration of a subroutine, object or type that is not also a
definition to @aluate an expression correctly.

As an exampleconsider the following igment of C code:

void myfunc()

{
int X;
{

extern float x;
g(x);

}

ANSI-C scoping rules requeitthat the value of the variable
passed to the functianis the value of the global variable
x rather than of the local version.

Debugging information entries that represent non-defining declarations
of a program object or type V@ a

DW_AT_declaration

attribute, whose value is a flag.

2.12 DeclarationCoordinates

It is sometimes useful in a delgagto be ale to associate a declaration
with its occurrence in the pgram source.

Any debugging information entry representing the declaration of
an object, module, subprogram or type mayeha

DW_AT decl_file ,

DW_AT_decl_line

and

DW_AT decl_column

attributes, each of whose value is a constant.

The value of the
DW_AT_decl_file
attribute corresponds

Revision: 2.0.0 Page 24
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

to a file number from the statement information table for the compilation
unit containing this debugging information entry and represents the
source file in which the declaration appeared (see section 6.2).

The value 0 indicates that no source file has been specified.

The value of the

DW_AT decl_line

attribute represents the source line number at which the first
character of the identifier of the declared object appears.
The value 0 indicates that no source line has been specified.

The value of the

DW_AT decl_column

attribute represents the source column number at which the first
character of the identifier of the declared object appears.

The value 0 indicates that no column has been specified.

2.13 Identifier Names

Any debugging information entry representing a program entity that
has been gen a mme may hee a

DW_AT name

attribute, whose value is a string representing the name as it appears
in the source programA debugging information entry containing

no name attribute, or containing a name attribute whose value consists
of a name containing a single null byte,

represents a program entity for which no name wamnghn the source.

Note that since the names obgnam dbjects

described by B/ARF are the names as thi@ppear in the source pgram,
implementations of langge tanslators that use some form of mangled
name (as do many implementations of C++) should use the unmangled
form of the name in the\BARF

DW_AT name

attribute, including the &yword

operator

if present. Sequencesmultiple whitespace charactenay be compressed.

Revision: 2.0.0 Page 25 July 27, 1993
Industry Reviwa Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 26 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

3. PROGRAM SCOPE ENTRIES

This section describes debugging information entries that relate
to different levels of program scope: compilation unit, module,
subprogram, and so on. These entries may be thought of as
bounded by ranges of text addresses within the program.

3.1 Compilation Unit Entries

An object file may be denéd from one or more compilation units. Each
such compilation unit will be described by a debugging information
entry with the tadW_TAG_compile_unit

A compilation unit typically represents the text and data contributed
to an executable by a single relocatable object filenay

be derived from several source files, including pre-processed “include
files®

The compilation unit entry may ha the following attributes:

1. A
DW_AT low_pc
attribute whose value is the
relocated address of the first machine instruction generated for that
compilation unit.

2. A
DW_AT_high_pc
attribute whose value is the
relocated address of the first location
past the last machine instruction generated for that compilation unit.

The address may be beyond the last valid instruction in the executable,
of coursefor this and other similar attributes.

The presence of W@and high pc attributes in a compilation unit entry
imply that the code generated for that compilation unit is
contiguous and exists totally within the boundaries specified

by those tw atributes. Ifthat is not the case, no low

and high pc attributes should be produced.

3. A
DW_AT name
attribute whose value is a
null-terminated string containing the full or relatipath name of
the primary source file from which the compilation unit waswedri

4. A
DW_AT language
attribute whose constant value is
a aode indicating the source language of the compilation unit.
The set of language names and their meanings are
given in FHgure 7.

Revision: 2.0.0 Page 27 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_LANG_C Non-ANSI C, such as K&R
DW_LANG_C89 ISO/ANSI C
DW_LANG_C_plus_plus C++
DW_LANG_Fortran77 FORTRAN77
DW_LANG_Fortran90 Fortran90
DW_LANG_Modula2 Modula2
DW_LANG_Pascal83 ISO/ANSI Pascal

Figure 7. Language names

5 A
DW_AT_stmt_list
attribute whose value is a reference to
line number information for this compilation unit.

This information is placed in a separate object file section from the debugging
information entries themsedg. Thevalue of the statement list attribute

is the offset in thedebug_line section of the first byte of the

line number information for this compilation unit. See section 6.2.

6. A
DW_AT_macro_info
attribute whose value is a reference to the macro information for this
compilation unit.

This information is placed in a separate object file section from the debugging
information entries themsedg. Thevalue of the macro information attribute

is the offset in thedebug_macinfo section of the first byte of the

macro information for this compilation unit. See section 6.3.

7. A
DW_AT_comp_dir
attribute whose value is a null-terminated string containing
the current working directory of the compilation command that
produced this compilation unit in whage form makes sense
for the host system.

The sugested form for the value of ti®W_AT _comp_dir
attribute on Wix systems is “hostnam@athnameé. If no
hostname is availabj¢he sugested form is ¢ pathname”.

8. A
DW_AT_producer
attribute whose value is a null-terminated string containing information
about the compiler that produced the compilation unit. The
actual contents of the string will be specific to each producer,
but should begin with the name of the compiler vendor or some
other identifying character sequence that showutitla
confusion with other producer values.

9. A
DW_AT identifier_case
attribute whose constant value is a code describing the treatment of
identifiers within this compilation unit. The set of identifier case

Revision: 2.0.0 Page 28 July 27, 1993
Industry Reviwv Draft

Programming Languages SIG

codes is gien in Fgure 8.

DW_ID_ case_sensitive
DW_ID_up_case
DW_ID_down_case
DW_ID_case_insensitive

Figure 8 ldentifier case codes

DW_ID_case_sensitive

is the default for all compilation units that do novédnis attribute.

It indicates that nameswgh as he values of

DW_AT _name

attributes in debugging information entries for the compilation unit
reflect the names as thappear in the source program.

The debugger should be senatio the case of identifier names
when doing identifier lookups.

DW_ID_up_case

means that the producer of the debugging information for this compilation
unit corverted all source names to upper case. The values of the

name attributes may not reflect the names asdyeear in the source
program. Thealebugger should ceert all names to upper case

when doing lookups.

DW_ID_down_case

means that the producer of the debugging information for this compilation
unit corverted all source names to lower case. The values of the

name attributes may not reflect the names asdyeear in the source
program. Thealebugger should ceert all names to lower case when

doing lookups.

DW _ID case_insensitive

means that the values of the name attributes reflect the names
as thg appear in the source program but that a case insensiti
lookup should be used to access those hames.

10. A
DW_AT base_types
attribute whose value is a reference. This attribute points to
a debugging information entry representing another compilation
unit. Itmay be used to specify the compilation unit containing
the base type entries used by entries in the current compilation
unit (see section 5.1).

This attribute povides a consumer a way to find the definition
of base types for a compilation unit that does not itself
contain sub definitions. Thisllows a consumefor example,
to interpret a type conversion to a base type correctly.

A compilation unit entry
owns debugging information entries that represent the declarations made in
the corresponding compilation unit.

Revision: 2.0.0 Page 29 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

3.2 ModuleEntries
Several languges have the concept of a “module

A module is

represented by a debugging information entry with the tag
DW_TAG_module

Module entries may own other debugging information entries describing
program entities whose declaration scopes end at the end of the module
itself.

If the module has a name, the module entry has a

DW_AT_name

attribute whose

value is a null-terminated string containing the module name as it appears
in the source program.

If the module contains initialization code, the module entry

has a

DW_AT low_pc

attribute whose value is the

relocated address of the first machine instruction generated for that
initialization code. It also has a

DW_AT_high_pc

attribute whose value is

the relocated address of the first location past the last machine
instruction generated for the initialization code.

If the module has been assigned a priptitynay have a

DW_AT _priority

attribute. Thevalue of this attribute is a reference to another
debugging information entry describing a variable with a constant
value. Thevalue of this variable is the actual constant

value of the modules griority, represented as it would be on the
target architecture.

A Modula2 definition module may be represented by a module entry
containing a

DW_AT_declaration

attribute.

3.3 Subroutine and Entry Point Entries

The following tags exist to describe debugging information
entries for subroutines and entry points:

DW_TAG_subprogram A global or file static subroutine or function.
DW_TAG inlined_subroutine A particular inlined instance of a subroutine or function.
DW_TAG_entry_point A Fortran entry point.

3.3.1 GeneralSubroutine and Entry Point Information

The subroutine or entry point entry has a
DW_AT_name

Revision: 2.0.0 Page 30 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

attribute
whose value is a null-terminated string containing the subroutine or entry
point name as it appears in the source program.

If the name of the subroutine described by an entry with the tag
DW_TAG_subprogram

is visible outside of its containing compilation unit, that

entry has a

DW_AT external

attribute, whose value is a flag.

Additional attributes for functions thatenembes of a dass or
structue are described in section 5.5.5.

A common debuggr featuee is to dlow the debuger user to call a
subroutine within the subjectqggram. Incertain cases, however,
the generated code for a subroutine will notyothee standad calling
conventions for the tget architecture and will therefoe rot

be safe to call from within a debys.

A subroutine entry may contain a

DW_AT _calling_convention

attribute, whose value is a constant. If this attribute is not
present, or its value is the constant

DW_CC_normal,

then the subroutine may be safely called by obeying the “standard”
calling comwentions of the target architecture. If the value of
the calling comention attribute is the constant
DW_CC_nocall ,

the subroutine does not ghgtandard calling corentions, and it
may not be safe for the debugger to call this subroutine.

If the semantics of the language of the compilation unit

containing the subroutine entry distinguishes between ordinary subroutines
and subroutines that can semas he “main prograni,t hat is, subroutines

that cannot be called directly following the ordinary callingventions,

then the debugging information entry for such a subroutine mayda

calling comwvention attribute whose value is the constant

DW_CC_program

The

DW_CC_program

value is intended to support Fortran mairograms.

Itis not intended as a way of finding the entry address for tigegm.

3.3.2 Subputine and Entry Point Return Types

If the subroutine or entry point is a function that returns a value, then
its debugging information entry has a

DW_AT type

attribute to denote the type returned by that function.

Debugging information entries for C

void

Revision: 2.0.0 Page 31 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

functions should not have an attribute for the return type.

In ANSI-C thee is a dfference between the types of functions
declared using function prototype style declarations and those
declared using non-prototype declarations.

A subroutine entry

declared with a function prototype style declaration mase fza
DW_AT_prototyped

attribute, whose value is a flag.

3.3.3 Subputine and Entry Point Locations

A subroutine entry has a

DW_AT low_pc

attribute whose value is the relocated address of the first machine instruction
generated for the subroutine.

It also has a

DW_AT_high_pc

attribute whose value is the relocated address of the

first location past the last machine instruction generated

for the subroutine.

Note that for the low and high pc attributes to have meaigARF
makes the assumption that the code for a single subroutine is allocated
in a single contiguous bl&mf memory.

An entry point has a

DW_AT low_pc

attribute whose value is the relocated address of the first machine instruction
generated for the entry point.

Subroutines and entry points may alswéha

DW_AT_segment

and

DW_AT address_class

attributes, as appropriate, to specify which segments the code
for the subroutine resides in and the addressing mode to be used
in calling that subroutine.

A subroutine entry representing a subroutine declaration
that is not also a definition does novédow and high pc attributes.

3.3.4 DeclarationgOwned by Subroutines and Entry Points

The declarations enclosed by a subroutine or entry point

are represented by debugging information entries that are

owned by the subroutine or entry point entry.

Entries representing the formal parameters of the subroutine or

entry point appear in

the same order as the corresponding declarations in the source program.

Thele is no @dering requirement on entries for declarations that are
children of subroutine or entry point entries but that do not represent
formal parametes. Theformal parameter entries may be interspersed

Revision: 2.0.0 Page 32 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

with other entries used by formal parameter entriesh stgciype entries.

The unspecified parameters of a variable parameter list
are represented by a debugging information entry with the tag
DW_TAG_unspecified_parameters

The entry for a subroutine or entry point that includes a Fortran
common block has a child entry with the tag
DW_TAG_common_inclusion .

The common inclusion entry has a

DW_AT common_reference

attribute whose value is a reference to the debugging entry for
the common block being included (see section 4.2).

3.3.5 Low-Levd | nformation

A subroutine or entry point entry mayvea

DW_AT return_addr

attribute, whose value is a location description.

The location calculated is the place where the return address for
the subroutine or entry point is stored.

A subroutine or entry point entry may alsovhaa

DW_AT frame_base

attribute, whose value is a location description that
computes the “frame baséor the subroutine or entry point.

The frame base for a proceduis typically an address fixed
relative to the first unit of stage dlocated for the procedure’s
stak frame The

DW_AT frame_base

attribute can be used in several ways:

1. Inprocedures that need location lists to locate local variables, the
DW_AT_frame_base
can hold the needed location list, while all variables’
location descriptions can be simpler location expressions involving the frame
base.

2. ltcan be used as &% n resolving "up-level" addressing with nested
routines. (See
DW_AT_static_link
below)

Some languges support nested subutines. Insud languayes, it is possible
to reference the local variables of an outer subroutine from within

an inner subroutine The

DW_AT_static_link

and

DW_AT frame_base

attributes allow debuggrs to support this same kind of referencing.

If a subroutine or entry point is nested, it mayéha
DW_AT static_link
attribute, whose value is a location description that

Revision: 2.0.0 Page 33 July 27, 1993
Industry Reviwa Draft

DWARF Debugging Information Format

computes the frame base of the vale instance of the subroutine
that immediately encloses the subroutine or entry point.

In the context of supporting nested subroutines, the
DW_AT frame_base
attribute value should olpehe following constraints:

1. Itshould compute a value that does not change during the life of the procedure,

and

2. Thecomputed value should be unique among instances of the same subroutine.

(For typical

DW_AT frame_base

use, this means that a recuesi

subroutines dack frame must he ron-zero size.)

If a debuger is attempting to resolve an up-level reference to a varidble
uses the nesting structuof DVARF to determine whitsubroutine is the lexical
parent and the

DW_AT static_link

value to identify the appropriate active frame

of the paent. Itcan then attempt to find the reference within the context

of the parent.

3.3.6 Types Thrown by Exceptions

In C++ a subroutine may declara €t of types for which
that subroutine may generate or “throwh exception.

If a subroutine explicitly declares that it may thran
exception for one or more types, each such type is
represented by a debugging information entry with the tag
DW_TAG_thrown_type .

Each such entry is a child of the entry representing the
subroutine that may thwothis type. All thrown type entries
should follawv all entries representing the formal parameters
of the subroutine and precede all entries representing the
local variables or lexical blocks contained in the subroutine.
Each thrown type entry contains a

DW_AT _type

attribute, whose value is a reference to an entry describing
the type of the exception that may be thrown.

3.3.7 FunctionTemplate Instantiations

In C++ a function template is a generic

definition of a function that

is instantiated differently when called with values

of different typesDWARF does not represent the generic
template definition, but does representtemstantiation.

A template instantiation is represented by a debugging information
entry with the tag

DW_TAG_subprogram.

With three exceptions,

Revision: 2.0.0 Page 34
Industry Reviwav Draft

July 27, 1993

Programming Languages SIG

such an entry will contain the same attributes ane tiee same
types of child entries as would an entry for a subroutine
defined explicitly

using the instantiation types. The exceptions are:

1. Eachformal parameterized type declaration appearing in the
template definition is represented by a debugging information entry
with the tag
DW_TAG_template type_ parameter
Each such entry has a
DW_AT name
attribute, whose value is a null-terminated
string containing the name of the formal type parameter as it
appears in the source program. The template type parameter
entry also has a
DW_AT type
attribute describing the actual type by
which the formal is replaced for this instantiation.

All template type parameter entries should appear before
the entries describing the instantiated formal parameters
to the function.

2. Ifthe compiler has generated a special compilation unit
to hold the template instantiation and that compilation unit
has a different name
from the compilation unit containing the template definition,
the name attribute for the debugging entry representing
that compilation unit should be empty or omitted.

3. Ifthe subprogram entry representing the template instantiation
or ary of its child entries
contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not
to ary source generated artificially by the compiler for this
instantiation.

3.3.8 Inline Subroutines

A declaration or a definition of an inlinable subroutine

is represented by a debugging information entry with the tag
DW_TAG_subprogram.

The entry for a subroutine that is explicitly declared

to be @ailable for inline expansion or that was expanded inline
implicitly by the compiler has a

DW_AT _inline

attribute whose value is a constant. The set of values

for the

DW_AT inline

attribute is gven in Fgure 9.

3.3.8.1 Abstractinstances
For the remainder of this discussion,

Revision: 2.0.0 Page 35 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Name Meaning

DW_INL_not_inlined Not declared inline nor inlined by the compiler
DW_INL_inlined Not declared inline but inlined by the compiler
DW_INL_declared_not _inlined Declared inline but not inlined by the compiler
DW_INL_declared_inlined Declared inline and inlined by the compiler

Figure 9 Inline codes

ary debugging information entry that is owned (either directly or
indirectly) by a debugging information entry that contains the

DW_AT _inline

attribute will be referred to as an “abstract instance éntry

Any subroutine entry that contains a

DW_AT inline

attribute will be known as an “abstract instance foot.

Any set of abstract instance entries that are all children (either directly
or indirectly) of some abstract instance root, together with the root itself,
will be known as an “abstract instance ttee.

A debugging information entry that is a member of an abstract instance
tree should not contain a

DW_AT_high_pc,

DW_AT low_pc,

DW_AT_location ,

DW_AT return_addr ,

DW_AT start_scope

or

DW_AT_segment

attribute.

It would not mak snse to put these attributes

into abstract instance entries since

sud entries do not represent actual (concrete) instances and thus
do not actually exist at run-time.

The rules for the relate location of entries belonging to abstract instance
trees are exactly

the same as for other similar types of entries that are not abstract.
Specifically the rule that requires that an entry representing a

declaration be a direct child of the entry representing the scope of

the declaration applies equally to both abstract and

non-abstract entries. Also, the ordering rules for formal parameter entries,
member entries, and so on, all applgaréless of whether or not avgh entry

is abstract.

3.3.8.2 Concete Inlined Instances

Each inline expansion of an inlinable subroutine is represented

by a debugging information entry with the tag

DW_TAG inlined_subroutine

Each such entry should be a direct child of the entry that represents the
scope within which the inlining occurs.

Revision: 2.0.0 Page 36
Industry Reviwav Draft

July 27, 1993

Programming Languages SIG

Each inlined subroutine entry contains a

DW_AT low_pc

attribute, representing the address of the first

instruction associated with thevgn inline

expansion. Eacinlined subroutine entry also contains a
DW_AT_high_pc

attribute, representing the

address of the first location past the last instruction associated with
the inline expansion.

For the remainder of this discussion,

ary debugging information entry that is owned (either directly or indirectly)
by a debugging information entry with the tag
DW_TAG_inlined_subroutine

will be referred to as a “concrete inlined instance enhtry

Any entry that has the tag

DW_TAG inlined_subroutine

will be known as

a “concrete inlined instance root.

Any set of concrete inlined instance entries that are all children (either
directly or indirectly) of some concrete inlined instance root, together
with the root itself, will be known as a “concrete inlined instance

tree’

Each concrete inlined instance tree is uniquely associated with one (and
only one) abstract instance tree.

Note howeverthat the ewerse is not true Any given abstract instance
tree may be associated with several different concrete inlined instance
trees, or may even be associated witlo zencrete inlined instance

trees.

Also, each separate entry within @i concrete inlined instance tree is
uniquely associated with one particular entry in the associated abstract
instance tree. In other words, there is a one-to-one mapping from entries
in a given concrete inlined instance tree to the entries in the associated
abstract instance tree.

Note howeverthat the ewverse is not true A given abstract instance
tree that is associated with a given concrete inlined instance tree
may (and quite probably will) contain neentries than the associated
concrete inlined instance tree (see below).

Concrete inlined instance entries do notehaost of the attributes (except
for

DW_AT low_pc,

DW_AT_high_pc,

DW_AT location

DW_AT_return_addr

DW_AT_start_scope

and

DW_AT_segment)

that such entries

Revision: 2.0.0 Page 37 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

would otherwise normally he. In place of these omitted attributes,
each concrete inlined instance entry has a

DW_AT abstract_origin

attribute that

may be used to obtain the missing information (indirectly) from

the associated abstract instance enftitye value of the abstract

origin attribute is a reference to the associated abstract instance entry.

For each pair of entries that are associated via a

DW_AT abstract_origin

attribute, both members of the pair willMeethe same tag. So, for
example, an entry with the tag

DW_TAG_local_variable

can only be associated

with another entry that also has the tag
DW_TAG_local_variable.

The only exception to this rule is that the root of a concrete
instance tree (which muswedys hare the tag
DW_TAG_inlined_subroutine)

can only be associated with the root of its associated abstract
instance tree (which mustvyeate tag

DW_TAG_subprogram).

In general, the structure and content of given concrete

instance tree will be directly analogous to the structure and content
of its associated abstract instance tree.

There are tw exceptions to this general rule hovee

1. Noentries representing anonymous types &ee made a part
of ary concrete instance inlined tree.

2. Noentries representing members of structure, union or class
types are eer made a part of anconcrete inlined instance tree.

Entries that represent memiseand anonymous typeseaomitted from concrete
inlined instance trees becauseythould simply be redundant duplicates of
the corresponding entries in the associated abstract instaees.trf

any entry within a concrete inlined instance tree needs to refer to an
anonymous type that was declared within the scope of the

relevant inline function, the reference should simply refer to the abstract
instance entry for the given anonymous type.

If an entry within a concrete inlined instance tree contains
attributes describing the declaration coordinates of

that entry,

then those attributes should refer to the file, line and column
of the original declaration of the subroutine, not to the

point at which it was inlined.

3.3.8.3 Out-of-Linelnstances of Inline Subroutines

Under some conditions, compilers may need to generate congeetgadle
instances of inline subroutines other than at points where those subroutines
are actually calledFor the remainder of this discussion,

Revision: 2.0.0 Page 38
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

such concrete instances of inline subroutines will
be referred to as “concrete out-of-line instantes.

In C++, for exampletaking the address of a function declared to be inline
can necessitate the generation of a concrete out-of-line
instance of the given function.

The DNARF representation of a concrete out-of-line instance of an inline
subroutine is essentially the same as for a concrete inlined instance of

that subroutine (as described in the preceding section). The representation
of such a concrete out-of-line instance makes use of

DW_AT abstract_origin

attributes in exactly the same way as/thee used for a concrete inlined
instance (that is, as references to corresponding entries

within the associated

abstract instance tree) and, as for concrete instance trees, the

entries for anonymous types and for all members are omitted.

The differences between th&\IBRF representation of a concrete out-of-line
instance of a gen subroutine and the representation of a concrete inlined
instance of that same subroutine are as follows:

1. Theroot entry for a concrete out-of-line instance of\zegi
inline subroutine has the same tag as does its associated
(abstract) inline subroutine entry (that is, it does nueHae
tag
DW_TAG inlined_subroutine).

2. Theroot entry for a concrete out-of-line instance tree is
always directly owned by the same parent entry that
also owns the root entry of the associated abstract instance.

3.4 LexicalBlock Entries

A lexical blod is a lrackded sequence of source statements that may
contain any number of decktions. Insome languges (C and C++)
blocks can be nested within other blocks to any depth.

A lexical block is represented by a debugging information entry
with the tag
DW_TAG_lexical_block

The lexical block entry has a

DW_AT low_pc

attribute whose value is the

relocated address of the first machine instruction generated for the lexical
block.

The lexical block entry also has a

DW_AT high_pc

attribute whose value is the

relocated address of the first location

past the last machine instruction generated for the lexical block.

If a name has beenvgn to the lexical block in the source program,
then the corresponding lexical block entry has a

Revision: 2.0.0 Page 39 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_AT_name

attribute

whose value is a null-terminated string containing the name of the
lexical block as it appears in the source program.

This is not the
same as a C or C++ label (see below).

The lexical block entry owns debugging information entries that

describe the declarations within that lexical block.

There is one such debugging information entry for each local declaration
of an identifier or inner lexical block.

3.5 LabelEntries

A label is a way of identifying a source statemektabeled statement
is usually the taget of one or moe “go to” statements.

A label is represented by a debugging information entry

with the tag

DW_TAG_label.

The entry for a label should be owned by

the debugging information entry representing the scope within which the name
of the label could be tglly referenced within the source program.

The label entry has a

DW_AT_low_pc

attribute whose value is the

relocated address of the first machine instruction generated for the
statement identified by the label in the source program.

The label entry also has a

DW_AT_name

attribute

whose value is a null-terminated string containing the name of the
label as it appears in the source program.

3.6 With Statement Entries

Both Pascal and Modula support the concept of a “wittdtement.

The with statement specifies a sequence of executable statements
within whid the fields of a recarvariable may be referenced, unqualified
by the name of the reabvariable.

A with statement is represented by a debugging information entry with
the tag

DW_TAG_with_stmt .

A with statement entry has a

DW_AT low_pc

attribute whose value is the relocated

address of the first machine instruction generated for the body of

the with statementA with statement entry also has a

DW_AT high_pc

attribute whose value is the relocated

address of the first location after the last machine instruction generated for the body of

Revision: 2.0.0 Page 40 July 27, 1993
Industry Reviwv Draft

Programming Languages SIG

the statement.

The with statement entry has a

DW_AT type

attribute, denoting

the type of record whose fields may be referenced without full qualification
within the body of the statement. It also has a

DW_AT_location

attribute, describing Woto find the base address

of the record object referenced within the body of the with statement.

3.7 Try and Catch Block Entries

In C++ a lexical blok may be designated as a “cdidlock’

A catch block is an exception handler that handles exceptions
thrown by an immediately preceding “try bldcld catch block
designates the type of the exception that it can handle.

A try block is represented by a debugging information entry
with the tag

DW_TAG_try block .

A catch block is represented by a debugging information entry
with the tag

DW_TAG_catch_block .

Both try and catch block entries contain a

DW_AT low_pc

attribute whose value is the

relocated address of the first machine instruction generated for that
block. Theseentries also contain a

DW_AT_high_pc

attribute whose value is the

relocated address of the first location

past the last machine instruction generated for that block.

Catch block entries a & least one child entry,

an entry representing the type of exception accepted

by that catch block. This child entry will i ane of the tags
DW_TAG_formal_parameter

or

DW_TAG_unspecified_parameters :

and will hare the same form as other parameter entries.

The first sibling of each try block entry will be a catch block
entry.

Revision: 2.0.0 Page 41 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 42 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

4. DATA OBJECT AND OBJECT LIST ENTRIES

This section presents the debugging information entries that
describe individual data objects: variables, parameters and
constants, and lists of those objects that may be grouped

in a single declaration, such as a common block.

4.1 DataObject Entries

Program variables, formal parameters and constants are represented
by debugging information entries with the tags

DW_TAG_variable ,

DW_TAG_formal_parameter

and

DW_TAG_constant ,

respectiely.

The tag

DW_TAG_constant

is used for languges that distinguish between variables
that may have constant value and true named constants.

The debugging information entry for a program variable, formal
parameter or constant mayweahe following attributes:

1. A
DW_AT name
attribute whose value is a null-terminated
string containing the data object name as it appears in the source program.

If a variable entry describes a C++ anonymous union, the name
attribute is omitted or consists of a single zero byte.

2. Ifthe name of a variable is visible outside of its enclosing
compilation unit, the variable entry has a
DW_AT external
attribute, whose value is a flag.

The definitions of C++ static data members

of structures or classesarepresented by variable entriesgitad
as external.

Both file static and local variables in C and C++earepresented
by non-external variable entries.

3. A
DW_AT location
attribute, whose value describes the location of a variable or parameter
at run-time.

A data object entry representing a non-defining declaration of the object
will not have a bcation attribute, and will ve the

DW_AT_declaration

attribute.

In a variable entry representing the definition of the variable
(that is, with no
Revision: 2.0.0 Page 43 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_AT_declaration

attribute)

if no location attribute is present, or if

the location attribute is present but describes

a rull entry (as described in section 2.4), the variable

is assumed to exist in the source code but not inxgsutable
program (but see number 9, below).

The location of a variable may be further specified with a
DW_AT_ segment
attribute, if appropriate.

4. A
DW_AT type
attribute describing the type of the variable, constant or formal
parameter.

5. Ifthe variable entry represents the defining declaration for a C++ static
data member of a structure, class or union, the entry has a
DW_AT_specification
attribute, whose value is a reference to the debugging information
entry representing the declaration of this data membee
referenced entry will be a child of some class, structure or
union type entry.

Variable entries containing the

DW_AT_specification

attribute do not need to duplicate information provided by the
declaration entry referenced by the specification attribute.

In particular such variable entries do not need to contain
attributes for the name or type of the data member whose
definition the represent.

6. Some languges dstinguish between paramesanhose value in the
calling function can be madified by the callee (variable parameters),
and parametes whose value in the calling function cannot be modified
by the callee (constant parameters).

If a formal parameter entry represents a parameter whose value
in the calling function may be modified by the callee, that entry
may hae a

DW_AT variable_parameter

attribute, whose value is a flag. The absence of this attribute
implies that the parametenalue in the calling function cannot

be modified by the callee.

7. Fortran90 has the concept of an optional parameter.

If a parameter entry represents an optional paramebars a
DW_AT is_optional
attribute, whose value is a flag.

8. Aformal parameter entry describing a formal parameter that has a default
value may hae a
DW_AT default_value
Revision: 2.0.0 Page 44 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

attribute. Thevaue of this attribute is a reference to the
debugging information entry for a variable or subroutine. The
default value of the parameter is the value of the variable (which
may be constant) or the value returned by the subroutine. If the
value of the

DW_AT_default_value

attribute is O, it means that no default value has been specified.

9. Anentry describing a variable whose value is constant
and not represented by an object in the address space of the program,
or an entry describing a named constant,
does not hee a bcation attrilute. Suctentries hae a
DW_AT_const_value
attribute, whose value may be a string oy afithe constant
data or data block forms, as appropriate for the representation
of the variables value. Thevalue of this attribute is the actual
constant value of the variable, represented as it would be
on the target architecture.

10. Ifthe scope of an object begins sometime after thgtovalue
for the scope most closely enclosing the object, the
object entry may hae a
DW_AT _start_scope
attribute. Thevalue of this attribute is the offset in bytes of the beginning
of the scope for the object from theMpc value of the debugging
information entry that defines its scope.

The scope of a variable may begin somewlrethe middle of a lexical
block in a languaye hat allows executable code in a

blodk before a \ariable declaration, or wherone declaration
containing initialization code may chamdhe scope of a subsequent
declamation. For examplein the following C code:

float x = 99.99;

int myfunc()

{

float f = x;
float x = 88.99;

return O;

}

ANSI-C scoping rules reqaitthat the value of the variable
assigned to the variablein the initialization sequence

is the value of the global variabke rather than the locak,
because the scope of the local variablenly starts after the full
declarator for the locak.

4.2 CommonBlock Entries

A Fortran common block may be described by a debugging information
entry with the tag

Revision: 2.0.0 Page 45 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_TAG_common_block

The common block entry has a

DW_AT name

attribute whose value is a null-terminated

string containing the common block name as it appears in the source program.
It also has a

DW_AT_location

attribute whose value describes the location of the beginning of the

common block. The common block entry owns debugging information

entries describing the variables contained within the common block.

4.3 Imported Declaration Entries

Some languges support the concept of importing into a given
module declarations made in a different module.

An imported declaration is represented by a debugging information
entry with the tag

DW_TAG_imported_declaration

The entry for the imported declaration has a

DW_AT name

attribute whose value

is a null-terminated string containing the name of the entity
whose declaration is being imported as it appears in the source
program. Theémported declaration entry also has a

DW_AT import

attribute, whose value is a reference to the debugging information
entry representing the declaration that is being imported.

4.4 NamelistEntries

At least one languge, Fortran90, has the concept of a namelist.

A namelist is an ordered list of the hames of some set of declared objects.
The namelist object itself may be used as a replacement for the

list of names in various contexts.

A namelist is represented by a debugging information entry with

the tag

DW_TAG_namelist .

If the namelist itself has a name, the namelist entry has a

DW_AT_name

attribute, whose value is a null-terminated string containing the namelist’s
name as it appears in the source program.

Each name that is part of the namelist is represented by a debugging
information entry with the tag

DW_TAG_namelist_item

Each such entry is a child of the namelist erang all of

the namelist item entries for avgh namelist are ordered as were

the list of names tlyecorrespond to in the source program.

Each namelist item entry contains a
DW_AT namelist_item

Revision: 2.0.0 Page 46 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

attribute whose value is a reference to the debugging information
entry representing the declaration of the item whose name
appears in the namelist.

Revision: 2.0.0 Page 47 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 48 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

5. TYPEENTRIES

This section presents the debugging information entries
that describe program types: base types, modified types
and user-defined types.

If the scope of the declaration of a named type begins sometime after
the lawv pc value

for the scope most closely enclosing the declaration, the

declaration may he a

DW_AT_start_scope

attribute. Thevaue of this attribute is the offset in bytes of the beginning
of the scope for the declaration from ther pc value of the debugging
information entry that defines its scope.

5.1 Baselype Entries

A base type is a data type that is not defined in terms of
other data types. Elagqrogramming languge tas a set of
base types that arcmnsidered to be built into that langga

A base type is represented by a debugging information entry
with the tag

DW_TAG_base_type.

A base type entry has a

DW_AT name

attribute whose value is a null-terminated

string describing the name of the base type as recognized by
the programming language of the compilation unit containing
the base type entry.

A base type entry also has a

DW_AT_encoding

attribute describing vathe base type is encoded and is

to be interpreted. The value of this attribute is a constant.
The set of values and their meanings for the
DW_AT_encoding

attribute is gen in Hgure 10.

Name Meaning

DW_ATE_address linear machine address
DW_ATE_boolean true or false
DW_ATE_complex_float comple floating-point numbey
DW_ATE_float floating-point number
DW_ATE_signed signed binary integer
DW_ATE_signed_char signed character
DW_ATE_unsigned unsigned binary integer
DW_ATE_unsigned_char unsigned character

Figure 10. Encoding attribute values

All encodings assume the representation that is “nofral’
the target architecture.

Revision: 2.0.0 Page 49 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

A base type entry has a

DW_AT byte_size

attribute, whose value is a constant,
describing the size in bytes of the storage
unit used to represent an object of theegitype.

If the value of an object of thevgh type does not

fully occupy the storage unit described by the byte size attribute,
the base type entry mayJuwa

DW_AT bit_size

attribute and a

DW_AT bit_offset

attribute, both of whose values are constants.

The bit size attribute describes the actual size in bits used
to represent a value of thevgn type. Thebit offset

attribute describes the offset in bits of the high order

bit of a value of the gen type from the high order bit

of the storage unit used to contain that value.

For example the C type

int

on a machine that uses 32-bit igées would be
represented by a base type entry with a name
attribute whose value wasrit " an

encoding attribute whose value was
DW_ATE_signed

and a byte size attribute whose value was

4.

5.2 Type Modifier Entries

A base or user-defined type may be modified in different
ways in different languagesA type maodifier is represented

in DWARF by a debugging information entry with one of the
tags gven in FHgure 11.

Tag Meaning

DW_TAG_const_type C or Ct++ const qualified type

DW_TAG_packed_type Pascal packed type

DW_TAG_pointer_type The address of the object whose type is being modified
DW_TAG_reference_type A C++ reference to the object whose type is being modjfied
DW_TAG_volatile_type C or C++ volatile qualified type

Figure 11. Type modifier tags

Each of the type modifier entries has a

DW_AT type

attribute, whose value is a reference to a debugging information
entry describing a base type, a user-defined type or another type

modifier.

A modified type entry describing a pointer or reference type

may hae a

Revision: 2.0.0 Page 50 July 27, 1993

Industry Reviav Draft

DW_AT_address_class

attribute

to describe hw objects having the gén pointer or reference type
ought to be dereferenced.

When multiple type modifiers are chained together to modify
a base or user-defined type, yhare ordered as if part of

a right-associatie expression imolving the base or user-defined
type.

As examples of how type modiiere ardered, tale the following
C declarations:

const char * volatile p;
which represents a volatile pointer to a constant character.
This is encoded in WARF as:
DW_TAG_volatile_type >
DW_TAG_pointer_type -
DW_TAG_const_type -
DW_TAG_base_type

volatile char * const p;

on the other hand, represents a constant pointer

to a volatile character.

This is encoded as:

DW_TAG_const_type -

DW_TAG_pointer_type -
DW_TAG_volatile_type -
DW_TAG_base_type

5.3 Typedef Entries

Any arbitrary type named via a typedef is represented
by a debugging information entry with the tag
DW_TAG_typedef .

The typedef entry has a

DW_AT_name

attribute whose value is a null-terminated

string containing the name of the typedef as it appears in the
source program.

The typedef entry also contains a

DW_AT _type

attribute.

If the debugging information entry for a typedef represents a
declaration of the type that is not also a definition,
it does not contain a type attribute.

5.4 Array Type Entries

Many languges share the concept of an “arrgy which is a
table of components of identical type.

Revision: 2.0.0 Page 51
Industry Reviav Draft

Programming Languages SIG

July 27, 1993

DWARF Debugging Information Format

An array type is represented by a debugging information entry with
the tag
DW_TAG_array_type .

If a name has beenvgn to the array type in the source program, then the
corresponding array type entry has a

DW_AT name

attribute whose value is a

null-terminated string containing the array type name as it appears in the
source program.

The array type entry describing a multidimensional array mag ha
DW_AT_ordering

attribute whose constant value is interpreted to mean either
row-major or column-major ordering of array elements.

The set of values and their meanings for the ordering attribute
are listed in Figure 12.

If no ordering attribute is present, the default ordering for

the source language (which is indicated by the
DW_AT_language

attribute of the enclosing compilation unit entry)

is assumed.

DW_ORD_col_major
DW_ORD_row_major

Figure 12. Array ordering

The ordering attribute may optionally appear on one-dimensional arrays; it
will be ignored.

An array type entry has a
DW_AT type

attribute describing the type
of each element of the array.

If the amount of storage allocated to hold each element of an object of
the given array type is different from the amount of storage that is normally
allocated to hold an individual object of the indicated element type, then
the array type entry has a

DW_AT_stride_size

attribute, whose constant value

represents the size in bits of each element of the array.

If the size of the entire array can be determined statically at compile
time, the array type entry mayveaa

DW_AT_ byte_size

attribute, whose constant value represents the total size in bytes of an
instance of the array type.

Note that if the size of the array can be determined statically at
compile timethis value can usually be computed by multiplying
the number of array elements by the size o egmnent.

Each array dimension is described by a debugging information
Revision: 2.0.0 Page 52
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

entry with either the tag

DW_TAG_subrange_type

or the tag

DW_TAG_enumeration_type

These entries are children of the array type entry and are
ordered to reflect the appearance of the dimensions in the source
program (i.e. leftmost dimension first, next to leftmost second,
and so on).

In languayes, sut as ANSI-C, in whib there is no oncept of a

“ multidimensional array

an array of arrays may be represented by a debugging information entry
for a multidimensional array.

5.5 Structure, Union, and Class Type Entries

The languges C, G-+, and Pascal, among others,

allow the ppgrammer to define types that

are owllections of related components. In C and C++, these collections are
called “structures. | n Pascal, thg are called “records. T he components
may be of different types. The componendsaalted “members’in C and

C++, and “fields” in Pascal.

The components of these collectionshexést in their own space in
computer memoryThe components of a C or C++ “unidrall coexist in
the same memory.

Pascal and other languges have a “discriminated uniohalso called a

“ variant record. H ere, ®lection of a number of alternative substructures
(“variants”) is based on the value of a component that is not part of any of
those substructures (the “discriminant”).

Among the languges dscussed in this document,

the “class’ concept is unique to C++A dass is similar to a structer

A C++ class or structue may have “member functionishich are subroutines
that are within the scope of a class or struatur

5.5.1 GeneralStructur e Description

Structure, union, and class types are represented by

debugging information entries with the tags
DW_TAG_structure_type

DW_TAG_union_type

and

DW_TAG_class_type ,

respectiely.

If a name has beenvgn to the structure, union, or class in the source
program, then the corresponding structure type, union type, or class type
entry has a

DW_AT_name

attribute whose value is a null-terminated string

containing the type name as it appears in the source program.

If the size of an instance of the

Revision: 2.0.0 Page 53 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

structure type, union type, or class type entry can be determined
statically at compile time, the entry has a

DW_AT byte_size

attribute whose constant value is the number of bytes required to
hold an instance of the structure, union, or class, apgauading bytes.

For C and C++, an incomplete structar wnion or class type is represented
by a structue, wnion or class entry that does not have

a byte size attribute and that has a

DW_AT declaration

attribute.

The members of a structure, union, or class are represented by
debugging information entries that are owned by the corresponding
structure type, union type, or class type entry and appear in the same
order as the corresponding declarations in the source program.

Data member declarations occurring within the declaration of a stractur
union or class type arconsidered to be “definitionsdf those members,
with the exception of C++ “statitdata members, whose definitions
appear outside of the declaration of the enclosing strectumion

or class type Function member declarations appearing within a strustur
union or class type declarationedefinitions only if the body

of the function also appesaithin the type declaration.

If the definition for a gien member of the structure, union or class
does not appear within the body of the declaration, that member
also has a debugging information entry describing its definition.
That entry will hae a

DW_AT _specification

attribute referencing

the debugging entry owned by the

body of the structure, union or class debugging entry and representing
a ron-defining declaration of the data or function mem€fére
referenced entry will

not hare information about the location of that membew(lmd high
pc attributes for function members, location descriptions for data
members) and will hae a

DW_AT declaration

attribute.

5.5.2 Derved Classes and Structures

The class type or structure type entry that describes eedefass

or structure owns debugging information entries describing each of
the classes or structures it is ded from, ordered as tlyavere

in the source program. Each such entry has the tag

DW_TAG _inheritance

An inheritance entry has a

DW_AT type

attribute whose

value is a reference to the debugging information entry describing

Revision: 2.0.0 Page 54
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

the structure or class from which the parent structure or class

of the inheritance entry is deed. Italso has a

DW_AT data_member_location

attribute, whose value is a location description describing

the location of the beginning of

the data members contributed to the entire class by this

subobject relatie © the beginning address of the data members of the
entire class.

An inheritance entry may ka a

DW_AT _accessibility

attribute.

If no accessibility attribute is present,

private access is assumed.

If the structure or class referenced by the inheritance entry serves
as a virtual base class, the inheritance entry has a

DW_AT virtuality

attribute.

In C++, a derived class may contain access declarations that
change the accessibility of individual class memb&om

the overall accessibility specified by the inheritance declaration.
A dngle access declaration may refer to a set of overloaded
names.

If a derived dass or structure contains access declarations,

each such declaration may be represented by a debugging information
entry with the tag

DW_TAG_access_declaration

Each such entry is a child of the structure or class type entry.

An access declaration entry has a

DW_AT name

attribute, whose value

is a null-terminated string representing the name used in the
declaration in the source program, including alass or structure
gualifiers.

An access declaration entry also has a
DW_AT_accessibility

attribute

describing the declared accessibility of the named entities.

5.5.3 Friends

Each “friend’ declared by

a dructure, union or class type may be represented by

a debugging information entry that is a child of the structure,
union or class type entry; the friend entry has the tag
DW_TAG_friend.

A friend entry has a

DW_AT _friend
attribute, whose value is a reference to the debugging information
Revision: 2.0.0 Page 55 July 27, 1993

Industry Reviav Draft

DWARF Debugging Information Format

entry describing the declaration of the friend.

5.5.4 Structure Data Member Entries

A data member (as opposed to a member function) is represented by
a debugging information entry with the tag

DW_TAG_member

The member entry for a named member has a

DW_AT name

attribute

whose value is a null-terminated string containing the member name
as it appears in the source program. If the member entry describes
a C++ anonymous union, the name attribute is omitted or consists

of a single zero byte.

The structure data member entry has a
DW_AT type

attribute

to denote the type of that member.

If the member entry is defined in the structure or class,liblys a

DW_AT data_member_location

attribute whose value is a location

description that describes the location of that

member relatie © the base address of the structure, union, or class that
most closely encloses the corresponding member declaration.

The addressing expression represented by the location
description for a structdr data member expects the base address
of the structue data member to be on the expression stack
before keing evaluated.

The location description for a data member of a union may be omitted,
since all data membsiof a nion begin at the same address.

If the member entry describes a bit field, then that entry has the following
attributes:

1. A
DW_AT byte_ size
attribute whose constant value is the number of bytes that
contain an instance of the bit field ang padding bits.

The byte size attribute may be omitted if the size of the object containing
the bit field can be inferred from the type attribute of the data
member containing the bit field.

2. A
DW_AT bit_offset
attribute whose constant value is the number of bits
to the left of the leftmost (most significant) bit of the bit field value.

3. A
DW_AT bit_size
attribute whose constant value is the number of bits occupied

Revision: 2.0.0 Page 56 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

by the bit field value.

The location description for a bit field calculates the address of
an anonymous object containing the bit field. The address is
relative o the structure, union, or class that

most closely encloses the bit field declaration. The number

of bytes in this anonymous object is the value of the byte

size attribute of the bit field. The offset (in bits)

from the most significant bit of the

anonymous object to the most significant bit of the bit field is the
value of the bit offset attribute.

For example take ane possible representation of the following
structure definition in both big and little endian byte orders:

struct S {
int j:5;
int Kk:6;
int m:5;
int n:8;
|3

In both cases, the location descriptions for the debugging information
entries forj , k, mandn

describe the address of

the same 32-bit wdrthat contains all three members.

(In the big-endian case,

the location description addresses the most significant inyte

the little-endian casdhe least significant).

The following diagram shows the struatuayout and lists the bit

offsets for eaecase The offsets

are from the most significant bit of the object addressed by the location
description.

Bit Offsets: Big-Endian
JO 0 .
k:5 31J 26k 2om 15 n 7 pad 0
m:11
n:16

Bit Offsets: Little-Endian

j:27 -
k:21 31 pad 23 n 15m 10k 4 0
m:16
n:8

Revision: 2.0.0 Page 57 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

5.5.5 Structure Member Function Entries

A member function is represented in the debugging information by a
debugging information entry with the tag

DW_TAG_subprogram.

The member function entry may contain the same attributes and follows

the same rules as non-member global subroutine entries (see section 3.3).

If the member function entry describes a virtual function, then that entry
has a

DW_AT _virtuality

attribute.

An entry for a virtual function also has a

DW_AT vtable elem_location

attribute whose value contains a location

description yielding the address of the slot for the function

within the virtual function table for the enclosing class or structure.

If a subroutine entry represents the defining declaration

of a member function and that definition appears outside

of the body of the enclosing class or structure declaration,

the subroutine entry has a

DW_AT_specification

attribute, whose value is a reference to the debugging information
entry representing the declaration of this function memmbbke
referenced entry will be a child of some class or structure

type entry.

Subroutine entries containing the

DW_AT_specification

attribute do not need to duplicate information provided by the
declaration entry referenced by the specification attribute.

In particular such entries do not need to contain

attributes for the name or return type of the function member whose
definition the represent.

5.5.6 ClassTemplate Instantiations

In C++ a class template is a generic

definition of a class type that

is instantiated differently when an instance of the class

is declared or defined. The generic description of the class

may include both parameterized types and parameterized constant
values. IWARF does not represent the generic

template definition, but does representtemstantiation.

A class template instantiation is represented by a debugging information
with the tag

DW_TAG_class_type .

With four exceptions,

such an entry will contain the same attributes ane tiee same

types of child entries as would an entry for a class type defined

explicitly using the instantiation types and values.

Revision: 2.0.0 Page 58
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

The exceptions are:

1. Eachformal parameterized type declaration appearing in the
template definition is represented by a debugging information entry
with the tag
DW_TAG_template_type_parameter
Each such entry has a
DW_AT_name
attribute, whose value is a null-terminated
string containing the name of the formal type parameter as it
appears in the source program. The template type parameter
entry also has a
DW_AT_type
attribute describing the actual type by
which the formal is replaced for this instantiation.

2. Eachformal parameterized value declaration appearing
in the templated definition is represented by a debugging information
entry with the tag
DW_TAG_template_value_parameter
Each such entry has a
DW_AT name
attribute, whose value is a null-terminated
string containing the name of the formal value parameter as it
appears in the source program. The template value parameter
entry also has a
DW_AT type
attribute describing the type of the parameterized
value. Finally the template value parameter entry has a
DW_AT const_value
attribute, whose value is the actual constant value of the value
parameter for this instantiation as represented on the target
architecture.

3. Ifthe compiler has generated a special compilation unit
to hold the template instantiation and that compilation unit
has a different name
from the compilation unit containing the template definition,
the name attribute for the debugging entry representing
that compilation unit should be empty or omitted.

4. |If the class type entry representing the template instantiation
or ary of its child entries
contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not
to ary source generated artificially by the compiler.

5.5.7 \ariant Entries

A variant part of a structure is represented by a debugging
information entry with the tag

DW_TAG_variant_part

and is owned by the corresponding structure type

Revision: 2.0.0 Page 59 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

entry.

If the variant part has a discriminant, the discriminant is represented

by a separate debugging information entry which is a child of

the variant part entryThis entry has the form of a structure data member
entry.

The variant part entry will hee a

DW_AT_discr

attribute whose value is a

reference to the member entry for the discriminant.

If the variant part

does not hee a dscriminant (tag field), the variant part entry has a
DW_AT_type

attribute to represent the tag type.

Each variant of a particular variant part is represented by a debugging
information entry with the tag

DW_TAG_variant

and is a child of the variant part entffhe value that selects a
given variant may be represented in one of thregsv The

variant entry may hee a

DW_AT discr_value

attribute whose value represents a single case label.

The value of this attribute

is encoded as an LEB128 numb@&he number is signed if the tag
type for the variant part containing this variant is

a dgned type. The number is unsigned if the tag type is an unsigned type.

Alternatively, the variant entry may contain a

DW_AT discr_list

attribute, whose value represents a list of discriminant values.
This list is represented by yanf the block forms and may contain
a mixture of case labels and label ranges. Each item on the list
is prefixed with a discriminant value descriptor that determines whether
the list item represents a single label or a label range.

A single case label is represented as an LEB128

number as defined ab®

for the

DW_AT _discr_value

attribute. Alabel range is represented byotWEB128 numbers,
the low value of the range followed by the highlwe. Bothvalues
follow the rules for signedness just described.

The discriminant value descriptor is a constant that meg ha
one of the values gén in Hgure 13.

DW_DSC _label
DW_DSC _range

Figure 13. Discriminant descriptor values

If a variant entry has neither a
DW_AT _discr_value

Revision: 2.0.0 Page 60
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

attribute nor a

DW_AT discr_list

attribute, or if it has a

DW_AT discr_list

attribute with O size, the variant is a default variant.

The components selected by a particular variant are represented

by debugging information entries owned by the corresponding variant
entry and appear in the same order as the corresponding declarations in
the source program.

5.6 EnumerationType Entries

An “enumeration typéis a scalar that can assume one of a fixed number of
symbolic values.

An enumeration type is represented by a debugging information entry
with the tag
DW_TAG_enumeration_type

If a name has beenvgn to the enumeration type in the source program,
then the corresponding enumeration type entry has a

DW_AT _name

attribute

whose value is a null-terminated string containing the enumeration type
name as it appears in the source program.

These entries also Y a

DW_AT byte_size

attribute whose

constant value is the number of bytes required to hold an

instance of the enumeration.

Each enumeration literal is represented by a debugging information
entry with the tag

DW_TAG_enumerator .

Each such entry is a child of the enumeration type earidy

the enumerator entries appear in the same order as the declarations of
the enumeration literals in the source program.

Each enumerator entry has a

DW_AT_name

attribute, whose value is

a rull-terminated string containing the name of the enumeration
literal as it appears in the source program. Each enumerator

entry also has a

DW_AT_const_value

attribute, whose value is the actual numeric value of the enumerator
as represented on the target system.

5.7 Subroutine Type Entries

Itis possible in C to declerpointers to sibroutines that return a value
of a specific typeln both ANSI C and C++, it is possible to declare
pointes to subroutines that not only return a value of a specific type,

Revision: 2.0.0 Page 61 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

but accept only arguments of specific types. The type bffmicters
would be described with a “pointer tahodifier applied to a user-defined

type.

A subroutine type is represented by a debugging information entry
with the tag

DW_TAG_subroutine_type

If a name has beenvgh to the subroutine type in the source program,
then the corresponding subroutine type entry has a

DW_AT name

attribute

whose value is a null-terminated string containing the subroutine type
name as it appears in the source program.

If the subroutine type describes a function that returns a value, then

the subroutine type entry has a

DW_AT type

attribute

to denote the type returned by the subroutine.

If the types of the arguments are necessary to describe the subroutine type,
then the corresponding subroutine type entry owns debugging

information entries that describe the arguments.

These debugging information entries appear in the order

that the corresponding argument types appear in the source program.

In ANSI-C thee is a dfference between the types of functions
declared using function prototype style declarations and those
declared using non-prototype declarations.

A subroutine entry

declared with a function prototype style declaration mae lza
DW_AT prototyped

attribute, whose value is a flag.

Each debugging information entry
owned by a subroutine type entry has a tag whose value has one of
two possible interpretations.

1. Eachdebugging information entry that is owned by a subroutine type entry and
that defines a single argument of a specific type has the tag
DW_TAG_formal_parameter

The formal parameter entry has a type attribute
to denote the type of the corresponding formal parameter.

2. Theunspecified parameters of a variable parameter list are represented by a
debugging information entry owned by the subroutine type entry with the tag
DW_TAG_unspecified_parameters

5.8 String Type Entries

A “string” is a sequence of charactethat have specific semantics and
operations that separate them from arrays of characters.

Fortran is one of

the languages that has a string type.

Revision: 2.0.0 Page 62 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

A string type is represented by a debugging information entry
with the tag

DW_TAG_string_type

If a name has beenvgn to the string type in the source program,
then the corresponding string type entry has a

DW_AT_name

attribute

whose value is a null-terminated string containing the string type
name as it appears in the source program.

The string type entry may ha a

DW_AT_string_length

attribute whose value is a location description

yielding the location where the length of the string

is stored in the program. The string type entry may alse ha
DW_AT byte_size

attribute, whose constant value is the size in bytes of the data
to be retrigzed from the location referenced by the string length
attribute. Ifno byte size attribute is present, the size of the
data to be retrieed is the same as the size of an address on
the target machine.

If no string length attribute is present, the string type entry may ha
a

DW_AT_ byte_size

attribute, whose constant value is the length in bytes of

the string.

5.9 SetEntries

Pascal povides the concept of a “skty hich represents a group of
values of ordinal type.

A set is represented by a debugging information entry

with the tag

DW_TAG_set_type .

If a name has beenvgn to the set type,

then the set type entry has a

DW_AT_name

attribute

whose value is a null-terminated string containing the set type name
as it appears in the source program.

The set type entry has a
DW_AT _type

attribute to denote the type
of an element of the set.

If the amount of storage allocated to hold each element of an object of
the given st type is different from the amount of storage that is normally
allocated to hold an individual object of the indicated element type, then
the set type entry has a

DW_AT byte_size

Revision: 2.0.0 Page 63 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

attribute, whose constant value
represents the size in bytes of an instance of the set type.

5.10 SubrangeType Entries

Several languges support the concept of a “subrangeype object.
These objects can represent a subset of the values that an
object of the basis type for the subrargn represent.

Subrang type entries may also be used to represent the bounds
of array dimensions.

A subrange type is represented by a debugging information entry

with the tag

DW_TAG_subrange_type .

If a name has beenvgn to the subrange type,

then the subrange type entry has a

DW_AT_name

attribute

whose value is a null-terminated string containing the subrange type name
as it appears in the source program.

The subrange entry mayvea

DW_AT type

attribute to describe

the type of object of whose values this subrange is a subset.

If the amount of storage allocated to hold each element of an object of

the given subrange type is different from the amount of storage that is normally
allocated to hold an individual object of the indicated element type, then

the subrange type entry has a

DW_AT_ byte_size

attribute, whose constant value

represents the size in bytes of each element of the subrange type.

The subrange entry mayveate attributes

DW_AT lower_bound

and

DW_AT_upper_bound

to describe, respewtly, the lower and upper bound values

of the subrange.

The

DW_AT upper_bound

attribute may be replaced by a

DW_AT count

attribute, whose value describes the number of elements in

the subrange rather than the value of the last element.

If a bound or count value is described by a constant

not represented in the progranatidress space and can

be represented by one of t