GIT-QREFRESH(1) Git-MQ Commands GIT-QREFRESH(1)

NAME

git—qrefresh — update the current patch

SYNOPSIS

git qrefresh [—e] [[[-m <text>] ...]
git qrefresh [—e] [[[-m <text>] ...]

[-F <file>]] [-s] [<path> ...]
[-F <file>]] [-a]

DESCRIPTION

The git qrefresh command updates the topmost currently-applied patch, to incorporate changes staged in
git's index, and optionally, when the —a (or ——all) option is specified, unstaged changes to tracked files in
the working tree.

If the ——all option is not specified, and a list of one or more <path> arguments is, either explicitly as such,
or implicitly by means of specifying the —s (or ——short) option, (which has the effect of implicitly naming
all files which are already referenced within the patch), the updated content of the patch is restricted to
include only the named files.

OPTIONS

Git-MQ

—a, —all
Stage any currently unstaged changes in tracked files, before updating the patch; this option cannot be
combined with the —s (or ——short) option, or with any explicit list of <path> arguments.

—e, —edit
Open an editor, to facilitate further modification of the amended commit message, (which has been
specified by use of —file, or ——message options, or retrieved by default, from the current commit
whence the patch is derived), before amending the current commit, (effectively, this option is simply
passed on to the git commit ——amend command which refreshes this commit).

=F <name>, ——file=<name>

-1 <name>, ——logfile=<name>
Read the text, to be used as the amended commit message, from the file specified by <name>; if
<name> is specified as ‘-’, read the commit message text from standard input. By convention, git
expects the —F (or —file) variant of this option; the —1 (or ——logfile) alias is accepted for compatibility
with hg qrefresh usage.

—m <text>, ——message=<rext>
Use <text> for the amended commit message. If more than one instance of this option is specified,
each individual <text> block is appended to the commit message, as a separate paragraph. This
feature cannot be used in conjunction with the —F (or ——file) option.

—s, ——short
Short-list files which are already referenced within the patch, for inclusion in a restricted content
update; this has the effect of implicitly adding the path names for such files to the (possibly empty) list
of explicitly specified <path> name arguments.

-D, ——currentdate
Use the current date as the commit date, (as would be the normal case, if no commit date has been
recorded previously); record it within the patch header, such that it will be preserved as the patch
creation date, unless explicitly reset, during any subsequent git qrefresh, or git qimport of this patch;
this has the effect of overriding any commit date which may have been recorded previously, within the
patch header.

—d <datespec>, ——date=<datespec>
Set the commit date, and hence the patch creation date, to <datespec>, (which may be specified using
any date format recognized by git commit); record this within the patch header, such that it will be
preserved as the patch creation date, unless explicitly reset, during any subsequent git qrefresh, or
git qimport of this patch; this has the effect of overriding any commit date which may have been
recorded previously, within the patch header.

1.0 31-Mar-2022 1



GIT-QREFRESH(1) Git-MQ Commands GIT-QREFRESH(1)

-U, ——currentuser
Record the identity of the current user as the author of the patch, and of its associated commit, such
that this will be preserved, unless explicitly reset, during any subsequent git qrefresh, or git gimport
of this patch; this has the effect of overriding any author identification which may have been recorded
previously, within the patch header.

—u <userspec>, ——user=<userspec>
Record the identity of the user specified by <userspec>, (which may be specified in any form
recognized by git commit), as the author of the patch, and of its associated commit, such that this will
be preserved, unless explicitly reset, during any subsequent git qrefresh, or git qimport of this patch;
this has the effect of overriding any author identification which may have been recorded previously,
within the patch header.

EXIT STATUS
On successful completion, git qrefresh reports an exit status code of 0. Any non-zero exit status code
indicates that an error occurred.

COMPARISON WITH MERCURIAL QUEUES
Although inspired by, and for the most part based on behavioural observation of Mercurial's MQ
extension, the behaviour of the git qrefresh command differs from that of its hg qrefresh counterpart in the
following respects:—

. The ——include, and ——exclude options, which are supported by hg qrefresh, are not (currently)
supported by git qrefresh.

. The —-all option, described above, is neither supported by, nor required by hg qrefresh; it is
provided, as a Git—-MQ specific extension to the Mercurial Queues model, to achieve more flexible
interaction with git's index. The command: “git qrefresh ——all” will deliver behaviour which is
effectively equivalent to that of the “hg qrefresh” command.

AUTHOR
Copyright (C) 2019, by Keith Marshall

This man page was written by Keith Marshall <keith@users.osdn.me>, to accompany the Git—-MQ
program suite. It is published under the terms of the GNU Free Documentation Licence, version 1.3, (or
any later version published by the Free Software Foundation), with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

The Git-MQ program suite itself is distibruted under the terms of the GNU General Public Licence,
version 3, (or any later version published by the Free Software Foundation).

Copies of the GNU Free Documentation Licence, and of the GNU General Public Licence, are included
within the Git-MQ source distribution, in the files FDL-1.3, and LICENCE, respectively.

SEE ALSO
git—commit(1), git—qimport(1)

Git-MQ 1.0 31-Mar-2022 2



