
GIT−QSELECT(1) Git-MQ Commands GIT−QSELECT(1)

NAME
git−qselect − manage the active guard state of a patch queue

SYNOPSIS
git qselect [−s | −−series] [−v | −−verbose]
git qselect [−n | −−none] [−−pop] [−−reapply] [<guard> ...]

DESCRIPTION
The git qselect command is used to manage the active guard state of a patch queue, and so, in conjunction
with the git qguard command, control the selection of patches which may be pushed.

Depending on the combination of options and arguments specified, the git qselect command supports three
distinct modes of operation, namely, in order of precedence from highest to lowest:—

1. Invoked when the −n (or −−none) option, or any set of one or more <guard> arguments is specified,
the −n (or −−none) option, if specified, initially ensures that any currently active guards are
deactivated; the active guard state is then set to exactly match any particular set of <guard> arguments
which are specified.

Note that, in this highest precedence mode of operation, the effect of <guard> arguments is not

cumulative; thus, specification of the −n (or −−none) option together with any non-empty set of
<guard> arguments, while permitted, is effectively redundant. However, the −n (or −−none) option is

required, when the intent is to clear currently-active guards, and leave the queue with all guards
deactivated; in this case, the −n (or −−none) option must be specified, with no accompanying set of
<guard> arguments.

2. Invoked only when the −s (or −−series) option is specifed, and neither the −n (or −−none) option, nor
any <guard> argument is present, the command will display an alpha-numerically sorted list of guards
which have been defined by the git qguard command, and recorded within the series file, regardless of
the active guard state of the patch queue.

The display format, in this mode of operation, may be agumented to include a count of patches to
which each guard is assigned, (and also a count of patches to which no guards have been assigned,
designated by the reserved pseudo-guard name “NONE”), by specifying the −v (or −−verbose)
option, in conjunction with −s (or −−series).

3. Invoked when no <guard> arguments are, and neither the −n (or −−none) option, nor the
−s (or −−series) option is specified, this lowest precedence mode of operation simply produces a
display of the currently active guards, if any, or reports that no guards are active, otherwise.

Note that it is possible for the git qselect, and git qguard commands to modify the guard state of applied
patches, without changing the applied state of the patch series; invoking git qselect with the −−pop, or
−−reapply options modifies this behaviour.

OPTIONS
−n, −−none

Selects the highest precedence mode of operation, and causes deactivation of any currently active
guards.

−−pop

In the case where guarded patches, (in the prevailing guard state after specified changes, if any, hav e
been instated), precede the topmost applied patch, pop patches from the stack until no such patches
remain within the applied series.

−−reapply

Note the identity of the topmost applied patch, and proceed as for the −−pop option; then, provided
the former topmost patch remains unguarded, in the currently active guard state, push patches,
skipping any which are guarded, until the formerly identified patch again becomes topmost.

−s, −−series

Ignored if any <guard> argument, or the −−none option is also specified; otherwise selects the
intermediate precedence mode of operation, to display a list of all guards which have been defined in

Git-MQ 1.0 31-Mar-2022 1

GIT−QSELECT(1) Git-MQ Commands GIT−QSELECT(1)

the series file.

−v, −−verbose

In the case where the effect of the −−series option is dominant, include patch counts for each defined
guard, and the tally of unguarded patches, in the displayed list.

EXIT STATUS
On successful completion, git qselect reports an exit status code of 0. Any non-zero exit status code
indicates that an error occurred.

COMPARISON WITH MERCURIAL QUEUES
Inspired by, and for the most part based on behavioural observation of Mercurial's MQ extension, the
git qselect command exhibits fundamentally the same behaviour as its hg qselect counterpart.

CAVEATS AND BUGS
It may be observed that certain combinations of options, and <guard> arguments make no sense. Allowing
execution to continue, when any such nonsensical combination is specified, may be considered a bug.
However, this is not caught; rather, execution does continue, on the basis of selection of the highest
precedence applicable operating mode, and inconsistently specified options are silently ignored.

AUTHOR
Copyright (C) 2019, by Keith Marshall

This man page was written by Keith Marshall <keith@users.osdn.me>, to accompany the Git−MQ

program suite. It is published under the terms of the GNU Free Documentation Licence, version 1.3, (or
any later version published by the Free Software Foundation), with no Invariant Sections, no Front-Cover
Te xts, and no Back-Cover Texts.

The Git-MQ program suite itself is distibruted under the terms of the GNU General Public Licence,
version 3, (or any later version published by the Free Software Foundation).

Copies of the GNU Free Documentation Licence, and of the GNU General Public Licence, are included
within the Git-MQ source distribution, in the files FDL−1.3, and LICENCE, respectively.

SEE ALSO
git−qguard(1), git−qpop(1), git−qpush(1), git−qseries(1)

Git-MQ 1.0 31-Mar-2022 2

