
IDSgrep, version 0.5.1

Matthew Skala

March 27, 2014

Contents
Quick start 3

Introduction 5
What’s new . 5
Download, build, test, and install . 6
Unicode IDSes . 7
Interface to CJKVI . 8
Interface to CHISE IDS . 9
Interface to KanjiVG . 10
Interface to EDICT2 . 11
Interface to Tsukurimashou . 11
A note on TrueType/OpenType . 12

Invoking idsgrep 14
Command-line options . 14
Environment variables . 15

Technical details 17
The data structure . 17
EIDS syntax . 17
Matching . 20

Match anything . 21
Match anywhere . 21
Match children in any order . 21
NOT . 21
AND . 21
OR . 22
Literal tree matching . 22
Associative matching . 22
Regular expression matching . 23
User-defined matching predicates . 24

Cooked output . 24
Character widths and line wrapping . 26

Bit vector indices 28
Building and using bit vector indices . 28
Filtered matching . 29
Lambda filters . 30
BDD filters . 32
Memoization in the tree match . 32
Implementation details . 33

Bibliography 36

2

Quick start
Use idsgrep much as you would use grep:

idsgrep [⟨options⟩] ⟨pattern⟩ [⟨file⟩ . . .]

Its general function is to search one or more files
for items matching a pattern, like grep [8] but with a
different pattern syntax. Although potentially usable
for an unlimited range of tasks, idsgrep’s motivating
application is to searching databases of Han script
(Chinese, Japanese, etc.) character descriptions. It
provides a much more powerful replacement for the
“radical search” feature of dictionaries like Kiten [10]
and WWWJDIC [6].

The syntax for matching patterns, and the range
of command-line options available, are complicated.
Later sections of this document explain those things
in detail; for now, here are some examples.

idsgrep 萌 dictionary
A literal character searches for the decomposi-
tion of that character, exact match only.

idsgrep -d 萌
The -d option with empty argument searches a
default collection of dictionaries.

idsgrep -dtsuku 萌
The -d option can be given an argument to
choose a specific default dictionary. Note the ar-
gument must be given in the same argv-element
with the -d; the syntax -d tsuku with a space
would mean “Use the default dictionaries and
search for the (syntactically invalid) pattern
‘tsuku.’ ”

othersoft | idsgrep 萌
Standard input will be used if no other input
source is specified.

idsgrep -d ...日
Three dots match their argument anywhere, so
this will match 日, 早, and 萌.

idsgrep -d '?'
A question mark, which will probably require
shell quoting, matches anything. This is most
useful as part of a more complex pattern.

idsgrep -d '⿱?心'
Unicode Ideographic Description Characters can
be used to build up sequences that also incorpo-
rate the wildcards; this example matches char-
acters consisting of something above 心, such as
忽 and 恋 but not 応.

idsgrep -d '[tb](anything)心'
There are ASCII aliases for operators that may
be inconvenient to type; this query is function-
ally the same as the previous one.

idsgrep -d '&!萌...|日月'
Boolean prefix operators include & (AND), |
(OR), and ! (NOT). This example matches any-
thing that contains 日 or 月 but is not 萌.

idsgrep -d '*⿰日?'
Asterisk makes children match in any order; this
example matches 日 at left or right.

idsgrep -d '@⿱⿱?日?'
At-sign treats an operator as associative; this ex-
ample matches both ⿱⿱?日? and ⿱?⿱日?.

idsgrep -d '.../(femoral)'
Slash invokes Perl-compatible regular expres-
sion matching, which might be useful for the
EDICT2-based meaning dictionary.

idsgrep -d '...=?'
Equals escapes matching operators; this example
searches for a literal question mark anywhere in
the tree.

idsgrep -d '\X840C'
Several kinds of backslash escapes allow entering
characters that might not otherwise be available.

idsgrep -d -c indent 萌
The -c option selects “cooked” or pretty-printed
output modes.

idsgrep -d -C 萌
The -C option selects colourized output for ANSI
terminals (and, implicitly, cooked mode).

3

idsgrep -d -f FontFile.otf '#1'
The -f option reads the character set of an Open-
Type font and makes it available as a user-
defined matching predicate accessed with the
hash-mark; in the example, it looks up each char-
acter in the default dictionaries.

idsgrep -U '?'
The -U option generates a list of Unicode char-
acters.

idsgrep -Uxdb '?'
An optional argument to -U specifies information
to include in the generated list entries: x for hex-
adecimal value, d for decimal, b for block name.

idsgrep -U -f FontFile.otf '#1'
Combine -U and -f to list the characters in a font.

4

Introduction
The Han character set is open-ended. Although a
few thousand characters suffice to write the languages
most commonly written in Han script (namely Chi-
nese and Japanese) most of the time, popular stan-
dards define tens of thousands of less-popular char-
acters, and there are at least hundreds of thousands
of rare characters known to occur in names, histori-
cal contexts, and in languages like Korean and Viet-
namese that may still use Han script occasionally de-
spite now being written primarily in other scripts.

Computer text processing systems that use fixed
lists of characters will inevitably find themselves un-
able to represent some text. As a result, there is a
need to describe characters in a standard way that
may have no standard code points of their own. A
similar need for descriptions of characters arises when
looking up characters in a dictionary; a user may rec-
ognize some or all the visual features of a character
(such as its parts and the way they are laid out) with-
out knowing how to enter the character as a whole.

IDSgrep’s main function is to query character de-
scription databases in a flexible way. This need was
identified during development of the Tsukurimashou
font family [17]; there, the visual appearance of Han
character glyphs corresponds directly to the Meta-
Post code implementing them, and the desire for code
re-use and consistency often motivates a close exam-
ination of the existing work to answer questions like
“What other characters contain this shape, and how
did we implement it last time?” Standard tools like
grep [8] can sometimes be applied to answer such ques-
tions by searching for subroutine names in the source
code, but the related question of “What other charac-
ters, not yet implemented, could we build that would
use this shape?” requires comparing with some exter-
nal database of the characters commonly used in the
language. How can we run grep on the writing system
itself?

Someone confronted with an unknown character
and wanting to look it up in a more ordinary dic-
tionary to find the meaning may, similarly, want to
search for characters based on specific features while
leaving others unspecified, with questions like “What

characters exist that have the common 心 shape at
the bottom, with the upper part divided into two
things side by side? The two things at the top are
shapes I don’t recognize, printed too small for me to
identify them more precisely.” Existing dictionary-
query methods are not adequate for some reasonable
queries of this nature.

For instance, the radical-and-stroke-count
method of traditional character dictionaries requires
identifying the head radical and counting strokes,
both of which may be difficult; dictionary codes
like SKIP and Four Corners key on some layout
attributes but not all; multi-radical search allows the
user to choose whichever radicals they recognize, but
it ignores layout entirely; and computer handwriting
recognition generally works well if and only if the user
is sure of the writing of the first few strokes in the
character. Furthermore, these search schemes often
are implemented only in heavy, non-portable, GUI
software that cannot be automated and mixes poorly
with standard computing environments. IDSgrep
can answer the example query correctly with a single,
simple command line (idsgrep -d '[tb][lr]??心'). This
software is intended to bring the user-friendliness of
grep to Han character dictionaries.

Some passages in this manual are marked with �
the Knuthian “dangerous bend” sign in the margin.
These cover obscure or difficult aspects of the soft-
ware, less likely to be of interest to first-time users.
Beginners are encouraged to skip these parts on the
first reading, then come back and check them out
later if interested.

What's new
Version 0.5 was pushed out in a bit of a hurry because
of the discovery of a bug in the version 0.4 bit-vector
generator that, although it rarely would make any
difference in practical applications,* nonetheless in-

*The issue was that because of an array index written as 0
where it should have been 1 in a seldom-visited line of code, the
bits for the first child of the first child of a ternary root would
be recorded as if they were for a child, not grandchild, of the
root. That resulted in incorrect filtering in roughly 0.0006% of

5

validated the results of some experiments I was run-
ning. In order to be able to publish results referring
to a released version with the correction, it seemed
appropriate to change the planned schedule of the 0.5
release.

The main new items in version 0.5 are:

• support for CJKVI, which is a third-party
cleaned-up version of more or less the same data
as CHISE IDS (this database now ships with
IDSgrep);

• colourized output in cooked mode via the --
colour option;

• line wrapping in cooked mode;

• fixes for some obscure bugs in matching and
database compilation;

• nearly full test coverage (everything except the
TTF/OTF reader).

And then, demonstrating that haste makes waste,
issues were discovered in version 0.5, necessitating
some more patching and an extra release a few days
later. New stuff in version 0.5.1:

• Patched infelicities in handling of bit vector fil-
ters for unordered match: 0.5 would build the
lambda filter for an unordered-match query dif-
ferently depending on whether BDDs were com-
piled in. I think it’s likely that both results were
correct (they just put the Bloom-filter slop in
different places), but it resulted in differing fil-
ter hit counts depending on settings that would
not normally be expected to affect the hit count,
and it was a problem for testing.

• New options for run-time control of the two fil-
tering layers (to make speed comparisons and
testing easier).

• Build system adjustments to make it easier to
build without BDD support.

Download, build, test, and install
IDSgrep is distributed under the umbrella of the
Tsukurimashou project on Sourceforge.JP [17], http:
//tsukurimashou.sourceforge.jp/. Releases of IDSgrep
will appear on the project download page; develop-
ment versions are available by SVN checkout from
the trunk/idsgrep subdirectory of the repository. For

my test queries.

the convenience of Github users, the Tsukurimashou
(and thus IDSgrep) repository is also mirrored into a
Github repository [18], but the project on Source-
forge.JP and its SVN repository remain the main
public locations for IDSgrep development and all bug-
tracker items should be filed there.

A minimal default build and install could run
something like this:

tar -xzvf idsgrep-0.5.tar.gz
cd idsgrep-0.5
./configure
make
su -c 'make install'

IDSgrep can build dictionaries from the Tsukuri-
mashou font package, which is available through the
same Sourceforge.JP project as IDSgrep; from the
KanjiVG database available at http://kanjivg.tagaini.
net/ [3]; from the CHISE IDS database available
at http://chise.zinbun.kyoto-u.ac.jp/dist/ids/ [1]; from
the CJKVI database available at https://github.com/
cjkvi/cjkvi-ids [11]; or from the EDICT2 database
available at http://www.csse.monash.edu.au/~jwb/edict.
html [5]. For an ideal complete installation of IDS-
grep, one would download all those packages, build
Tsukurimashou first, and make it and the dictionaries
available to the IDSgrep configure script. The CJKVI
dictionary data (current as of March 22, 2014) is in-
cluded in the IDSgrep package, so need not be down-
loaded except to update it.

Regular expression matching requires build-
ing with the Perl-Compatible Regular Expression
(PCRE) library available at http://www.pcre.org/ [9].
Many Linux distributions install this library by de-
fault. Without PCRE, the regular-expression match-
ing features will not be included, and any attempt to
do regular-expression matching will result in a fatal
error.

Getting maximum benefit from the bit vector in-
dexing features requires building with the BuDDy
binary decision diagram library available at http://
sourceforge.net/projects/buddy/ [12]. Many Linux dis-
tributions install this library by default. Without
BuDDy, bit vectors will still work, but will not speed
up IDSgrep by as great a factor.

The configure script will by default make a rea-
sonable effort to find the dependencies; in many com-
mon cases it is not necessary to specify them on the
command line. Here is a more complete installation
process relying on configure to find Tsukurimashou in

6

a sibling directory and the other dictionaries in the
current directory:

unzip tsukurimashou-0.5.zip
cd tsukurimashou-0.5
./configure
make
install of Tsukurimashou not needed by IDSgrep
cd ..
tar -xzvf idsgrep-0.5.tar.gz
cd idsgrep-0.5
ln -s /some/where/else/kanjivg-20120219.xml.gz .
ln -s /some/where/else/edict2.gz .
ln -s /some/where/else/chise-ids-0.25 .
./configure
make
make check
su -c 'make install'

It is necessary to at least configure Tsukuri-
mashou, if not fully build it, before building IDSgrep.
The IDSgrep build will then invoke the Tsukuri-
mashou build to create just the files needed by IDS-
grep. It is not necessary to configure or build CHISE
IDS (which would require first installing other parts
of the larger CHISE system and probably XEmacs as
well); IDSgrep only needs to look at the CHISE IDS
data files.

If the default search fails, the filenames of Kan-
jiVG (.xml or .xml.gz), EDICT2 (.gz), and the direc-
tories containing extracted distributions of Tsukuri-
mashou and CHISE IDS can be specified on the
configure command line with the --with-kanjivg,
--with-edict2, --with-tsuku-build, and --with-chise-ids
options. For other options, run configure --help. It’s
a reasonably standard GNU Autotools [7] configura-
tion script, albeit with a lot of options for inapplicable
installation directories removed to simplify the help
message.

The EDICT2-based dictionary should prefer-
ably include character decompositions from some
other dictionary; which one is selectable by the
--enable-edict-decomp option. Allowed values include
chise, kanjivg, tsuku, cjkvi-j (other CJKVI languages
besides Japanese may also be specified, but might not
make much sense), and no; the default is cjkvi-j. The
value no corresponds to simply mapping every char-
acter to itself without further decomposition; that is
obviously not as informative as might be desired, but
it will still allow for regular expression searches.

The “check” Makefile target runs the IDSgrep test
suite. Some tests require the dictionary files and will

be skipped if those are not present. There is also a
test that will use Valgrind [16] if available, to check
for memory-related problems; if Valgrind is not found
in the PATH, this test will be skipped.

The IDSgrep installation process will attempt �
to build and install bit vector indices for what-
ever dictionaries it installs. Doing that entails run-
ning the idsgrep binary for the target system on the
build system, and so it is unlikely to work in the
case of Autotools-mediated cross-compilation. Cross-
compilation has not been tested at all and would
likely fail anyway, but this point seemed worth men-
tioning for the benefit of anyone who might be trying
to push the limits. Similarly, the bit vector index
files are architecture-specific. An idsgrep binary that
encounters bit vector files for a foreign architecture
will ignore them and use the unfiltered matching al-
gorithm; unfiltered matching is much slower, though
otherwise harmless. If you share parts of your instal-
lation between multiple architectures (for instance,
on a heterogenous LAN), and you wish idsgrep bina-
ries on every architecture to benefit from bit vectors,
or if you are just finicky in a general way about keep-
ing architecture-specific files and “pure” data sep-
arate from each other, then you may wish to pay
close attention to where your dictionaries and indices
are stored, and place bit vectors and dictionaries in
architecture-specific space.

The configure script supports an --enable-gcov �
switch to enable meta-testing of the test suite’s cov-
erage. This feature requires that the Gcov coverage
analyser be installed. To do a coverage analysis, run
configure with --enable-gcov and any other desired op-
tions, then do make clean (necessary to be sure all
object files are rebuilt with the coverage instrumen-
tation) followed by make check. Most people would not
want to install the IDSgrep binary itself when built
under this option. As of version 0.5, the current test
suite is not expected to achieve full coverage on most
installations (though it should come close), so do not
report failure of this test as a bug nor get too con-
cerned about it.

Unicode IDSes
Although IDSgrep uses a more elaborate syntax, it is
well to know about the Unicode Consortium’s “Ideo-
graphic Description Sequences” (IDSes), which are
a subset of IDSgrep’s. These are documented more
fully in the Unicode standard [21].

• A character from one of the Unified Han or CJK

7

Radical ranges is a complete IDS and simply rep-
resents itself. For instance, “大” is a complete
IDS.

• The Ideographic Description Characer (IDC)
code points U+2FF0, U+2FF1, and U+2FF4
through U+2FFB, whose graphic images look
like ⿰⿱⿴⿵⿶⿷⿸⿹⿺⿻, are prefix binary op-
erators. One of these characters followed by
two complete IDSes forms another complete IDS,
representing a character formed by joining the
two smaller characters in a way suggested by
the name and graphical image of the IDC. For
instance, “⿰日月” describes the character 明.
These structures may be nested; for instance,
“⿰言⿱五口” describes the character 語.

• The IDC code points U+2FF2 and U+2FF3,
which look like ⿲⿳, are prefix ternary operators.
(Unicode uses the less-standard word “trinary”
to describe them.) One of them can be followed
by three complete IDSes to form an IDS that de-
scribes a character made of three parts, much in
the same manner as the binary operators. For
instance, “⿱⿲糸言糸夂” describes the character
變.

• As of Unicode 6.1, IDS length is unlimited. Ear-
lier versions specified that an IDS could not be
more than 16 code points long overall nor contain
more than six consecutive non-operator charac-
ters. This rule appears to be have been intended
to make things easier for systems that need to be
able to jump into the middle of text and quickly
find the starts and ends of IDSes.

• IDSes non-bindingly “should” be as short as
possible and should reflect “the natural radical-
phonetic division for an ideograph if it has one.”

The Unicode standard does not mention variation
selectors in any IDS-related context, except that it
offers the possibility of prefixing U+303E, the “ideo-
graphic variation mark,” to the entire sequence to in-
dicate a variation. Such a prefix is explicitly defined
not to be counted as part of the IDS.

My opinion is that Unicode did not intend to per-
mit variation selectors inside IDS syntax. Variation
selectors arguably exist to patch over encoding in-
adequacies resulting from Unicode’s internal politics.
When a code point is not really specific enough, be-
cause it refers to two or more things which you think
are not actually the same thing, then you can add a

variation selector to indicate which thing you really
mean. IDSes, on the other hand, bearing in mind
that they are imported from GBK, operate at a lower
level to specify characters in terms of parts that are
assumed to be adequately encoded. If a code point
to be used in an IDS is not specific enough, then that
element should be described with a smaller fragment
of IDS syntax instead of by using the ambiguous code
point. If the closest match possible is still not per-
fect, then it is time to use U+303E. The fact they of-
fer the U+303E mechanism for specifying variations
offers further support to the idea that they did not
intend to allow variation selectors inside IDSes.

However, it’s a difficult question because IDSes,
by addressing the visual appearance of characters in-
stead of their semantics, fundamentally challenge the
basic Unicode principle that code points specify char-
acters and not glyphs. The distinction between char-
acters and glyphs simply cannot be made perfectly
in all cases. For use in cases where variation selec-
tors appear to be appropriate, both CHISE IDS and
IDSgrep extend IDS syntax in such a way as to allow
them in some way.

Interface to CJKVI
Taichi Kawabata and the CJKVI Project [11] main-
tain a database of Unicode IDSes derived from the
CHISE IDS database (next subsection) and marked
up for the different between Han-script languages
(Chinese, Japanese, Korean, etc.). There is little doc-
umentation of this database, and even less in English.
But the data is posted in a Github repository and oc-
casionally updated, and a current version as of this
writing is also bundled with IDSgrep. This data is
covered by GPL and as of IDSgrep 0.5, it is the sug-
gested default dictionary for IDSgrep. It contains
about 74000 entries, in an extended IDS syntax more
or less the same as CHISE IDS’s.

For most characters, the CJKVI database con-
tains a single IDS assumed to represent that char-
acter in all languages. When there is more than one
IDS for a character, usually the IDSes are tagged with
non-overlapping combinations of letters in the set {
G, T, J, K, V }, for simplified Chinese, traditional
Chinese, Japanese, Korean, and Vietnamese respec-
tively. There might be two slightly different IDSes
with one tagged [G] and the other tagged [TJK]; in
such a case IDSgrep’s dictionary compiler will use
the first for simplified Chinese; the second for tradi-
tional Chinese, Japanese, and Korean; and exclude
that entry entirely for any other languages, such as

8

Vietnamese. However, exceptions to this scheme ex-
ist. There are entries with more than one untagged
IDS for a character. There are entries with more
than one IDS sharing a tag. There are entries with
a mixture of tagged and untagged IDSes. And there
are even a few rare tags with unknown meanings that
occur only in a few entries (U, H, and X have all been
observed).

The bundled version of the database is in the file
cjkvi-ids.txt. Overwrite that file with a new version
of the CJKVI Project’s ids.txt file, if they release one
and you want to use it (new releases are rare now that
the data is mature). IDSgrep’s build system will ex-
pect to find this file included in the source directory.

Because of the language tagging, it is possible
to build more than one dictionary from CJKVI IDS
data. The --enable-cjkvi-style option to configure
takes a string of lowercase letters in the set { g, t, k, j,
v, x, h, a } and will build one dictionary for each letter
specified. For example, an argument value of “gtk”
would build the simplified and traditional Chinese
dictionaries and the Korean dictionary. The default
is “j.” Dictionaries are placed in files with names like
cjkvi-g.txt, cjkvi-t.txt, cjkvi-k.txt, and so on. Note
that the rare language tag U is always counted as if
it were X; and the special value “a” will match all
languages.

When building a dictionary for a language tag
other than “a,” for each code point the dictio-
nary builder will use the first IDS on the line in
cjkvi-ids.txt that matches the specified tag; if no IDS
specifically mentions the specified tag, then it will use
the first IDS on the line at all, should that one have no
tag; and otherwise it will not include that code point
in the dictionary. The “a” style is special: there, it
creates an entry for every IDS on the line, even if
that means several entries for the same code point.
However, the first one encountered is always the one
chosen for recursive decompositions of leaves in the
entries.

Interface to CHISE IDS
The CHISE project [1] maintains a database of Han
characters covering multiple languages as part of a
larger processing environment that also includes a
version of XEmacs [22] modified to follow the princi-
ples of the UTF-2000 initiative [14]. It also has con-
nections to GlyphWiki [2]. These systems are docu-
mented primarily in Japanese; English-language doc-
umentation is sparse and not necessarily up to date.

For IDSgrep’s purposes, the most interesting part

of CHISE is a module called CHISE IDS, which in-
cludes a database of about 140000 characters (exact
count depending on the version), with decomposi-
tions in its own extension of Unicode IDS syntax.
The main purpose of this IDS database is to provide a
search capability within the modified XEmacs; there
is also code for a Web search form. From examina-
tion of the database files it appears that the rules for
CHISE IDS’s extended IDS syntax are more or less
as follows.

• Generally, Unicode IDS rules apply.

• An XML entity-like sequence of the form &NAME;
counts as a single ideograph. The field indicated
by NAME is a symbolic identifier or database key
defined internally by the project. Such identifiers
have been observed to contain uppercase ASCII
letters, numerals, hyphens, and plus signs; they
usually consist of a short alphabetic prefix, a hy-
phen, and a number. These entity references
are usually used to refer to characters for which
CHISE has an encoding and Unicode doesn’t.

• A Unicode variation sequence (an ideograph fol-
lowed by a variation selector) counts as a single
character.

Although CHISE IDS’s extensions to IDS permit
strings that would not be valid IDSgrep EIDS syntax,
it is easy to convert them into EIDS format. IDSgrep
includes a chise2eids Perl script for that purpose. The
configure script will look for CHISE IDS in a directory
named chise-ids-* in a short list of likely places, or
use the value of the --enable-chise-ids command-line
option if one is given. This directory should simply
be an unpacked CHISE IDS distribution tarball, or
a checkout from the CHISE IDS Git repository. It is
not necessary to run CHISE’s Makefile, which would
require also having and installing other parts of the
larger system.

As of this writing (March 6, 2013), the CHISE
IDS distribution tarballs are available from http:
//chise.zinbun.kyoto-u.ac.jp/dist/ids/, and there is a
Git repository at http://git.chise.org/git/chise/ids.
git. However, on March 5, there was an announce-
ment posted to the CHISE Project’s mailing lists in
English and Japanese saying that on March 11 all the
servers at chise.org (which includes the mailing lists
themselves) will cease to operate. It is not clear to
me whether that is intended to be something tempo-
rary, or the permanent end of the project, but given

9

that nothing seems to have happened in CHISE in
years, I fear the worst. I have posted a snapshot
of the current CHISE IDS Git repository in my own
Github account at https://github.com/mskala/chise-ids;
that should be a long-term stable source of the data
used by IDSgrep.

The last distribution tarball of CHISE-IDS was
version 0.25 dated June 2010. The Git versions are
more recent and may be preferable. The directory
created by checking out a Git version will proba-
bly not have a name recognized automatically by the
build system, so it should be given on the configure
command line with --enable-chise-ids.

Roughly 6% of the entries in the CHISE IDS
database include invalid extended IDS syntax—most
often in the form of too many children for the op-
erators used, or less often, too few. Most but not
all of the errors occur in the IDS-HZK??.txt files, which
are unmaintained. It appears that the native search
tools for the database generally work on the basis of
pure substring searches, where the higher-level syn-
tax errors that would be detected by the IDSgrep
parser can go unnoticed. The chise2eids program gen-
erates a chise.errs file during build, listing all the syn-
tax errors it finds (11748 of them in the current Git
version as of this writing); invalid entries are other-
wise ignored and will not appear in the main output
file chise.eids. Although 6% may sound like a lot
of errors, the invalid entries are generally in suffi-
ciently obscure character components that it should
have little practical effect on the quality of dictionary
lookups: at worst, some character components may
end up not broken down into pieces as small as would
otherwise be possible.

CHISE IDS refers to individual characters in a
more general way than just by single Unicode code
point: sometimes it uses a variation sequence con-
sisting of a kanji code point followed by a variation
selector in the U+FE00 to U+FE0F or U+E0100
to U+E01EF ranges, and sometimes it uses a string
that looks like an XML character entity reference,
along the lines of “&NAME;.” Both of these map natu-
rally to IDSgrep’s concept of a multi-character head.
The two-code-point sequence U+840C U+E0101 is
translated to the IDSgrep syntax “<\X840c\X{E0101}>;,”
and the XML-like syntax “&FU-123;” is translated to
“<FU-123>;.” CHISE IDS does not seem to refer to the
same character in different ways (for instance, a code
point with no variation selector somehow matching
as a default to the same code point with a varia-
tion selector, which might be plausible under Uni-

code’s definition of what variation selectors signify)
and chise2eids does not attempt to accomodate any-
thing like that.

The CHISE IDS database is covered by the GNU
GPL version 2 or later, which is basically compatible
with the GNU GPL version 3 used by IDSgrep. IDS-
grep 0.4 included a bundled copy of the dictionary
derived from CHISE IDS, but as of version 0.5, that
has been replaced by a bundled copy of the CJKVI
database.

Interface to KanjiVG
The KanjiVG project [3] maintains a database of
kanji (Han characters as used by Japanese) in an ex-
tended SVG format, which implies that it is XML.
The kvg2eids Perl script, included as part of IDSgrep,
is capable of reading this database and converting it
to Extended Ideographic Description Sequences (EI-
DSes). As described above, if a reasonably recent ver-
sion of KanjiVG’s compressed XML file is available
to configure, then IDSgrep’s build will create such a
dictionary and make install will install it.

KanjiVG describes characters primarily in terms
of strokes, not multi-stroke components, and it at-
tempts to follow the official stroke order and etymo-
logical component breakdown. That approach results
in some peculiarities from the point of view of dic-
tionary searching. For instance, in the kanji 園, the
official stroke order is to write two strokes of the en-
closing box, then the central glyph, then the bot-
tom of the box. KanjiVG’s XML file lists two “ele-
ments” identified with the kanji 囗, one for the first
two strokes and one for the final stroke, with addi-
tional attributes specifying that they are actually two
parts of the same element. KanjiVG has changed its
own standard for how to represent this information in
the recent past, and not all entries have been updated
to the latest standard yet. The current version of
kvg2eids does not correctly process 園 nor some other
characters with parts written in nonsequential order.
On that particular one it generates a special functor
containing debugging information; for some others, it
may actually generate an EIDS with the same radical
appearing multiple times, following the structure de-
scribed in KanjiVG whether it’s what was intended
or not. As a result, not all entries in the dictionary
will be right. However, only a few are affected by this
issue.

As of March 2012, I (Matthew Skala, the author
of IDSgrep) have become a member of the KanjiVG
project and there is some possibility that KanjiVG’s

10

database design will change in a way that makes it
easier to recover spatial organization for searching
with IDSgrep.

With the current versions of IDSgrep and Kan-
jiVG, the KanjiVG-derived dictionary contains 6660
entries covering all the popularly-used Japanese
kanji. Note that the KanjiVG input file, and pre-
sumably the resulting format-converted dictionary,
are covered by a Creative Commons Attribution–
ShareAlike license, distinct from the GNU GPL ap-
plicable to IDSgrep itself.

Interface to EDICT2
Jim Breen’s JMdict/EDICT project maintains a file
called EDICT2 [5] which is more like a traditional dic-
tionary, with words and meanings, than a database of
kanji. Such dictionaries are not the primary target of
IDSgrep and IDSgrep’s query syntax is not perfectly
suited to them. However, the regular-expression
matching features may make it practical to search
EDICT2 with IDSgrep, and there is some value in
being able to do sub-character structural searches on
multi-character words.

If another dictionary besides EDICT2 is available
(subject to configuration by --enable-edict-decomp),
then the build system will generate and install a
dictionary file called edict.eids which represents a
database join of EDICT2 with the other dictionary.
With no other dictionary, the file can still be gen-
erated but will contain no character decomposition
information. A sample entry might look like this:

【明】,<明>⿰日月｟[みん] (n) Ming (dynasty of China)｠

The head for the entire entry is the head from
the EDICT2 entry. Then the tree is a binary tree
with a comma as the functor and the first child being
the entire decomposition dictionary entry for the first
character. The second child represents the rest of the
entry. With a two-character or longer head, this child
would also be a binary comma with the second char-
acter of the entry head as its first child. In this way
the characters of the entry head are all represented as
left children of commas, forming a linked-list struc-
ture (much like a Prolog linked-list with commas in-
stead of dots as the functors). The final child at the
bottom is a nullary node containing as its functor
simply the rest of the EDICT2 entry.

The rationale for this syntax is that it allows
a relatively simple way of querying multi-character
words in EDICT2 using the existing IDSgrep query
types. To find an exact match, just query the head

(which will require head brackets and a semicolon
if the query is more than one character long), as
in idsgrep -de '<教育>;'. To search for the first few
characters, commas can be imagined as separators
(though their actual function is quite different) with
a comma at the start and a question mark at the
end, as in idsgrep -de ',教,育?'. These queries can be
combined with the sub-character breakdown queries
already supported by the decomposition dictionar-
ies. For instance, idsgrep -de ',教,...|日月!,??' will
search for, and give definitions of, words of exactly
two characters in which the first is 教 and the second
character contains 日 or 月 anywhere. The restric-
tion to exactly two characters is accomplished by the
sub-query “!,??”, which fails to match on the binary
comma that would be present at that point in a longer
word.

EDICT2 is under the Creative Commons
Attribution–ShareAlike license. Since KanjiVG is as
well, that license would presumably also apply to a
combined dictionary made from EDICT2 and Kan-
jiVG. An EDICT2-only dictionary with no decompo-
sitions from other sources should similarly be under
Creative Commons Attribution–ShareAlike. It might
not be legal to distribute outside one’s own organi-
zation a dictionary formed by joining EDICT2 with
CHISE IDS or Tsukurimashou, because those sources
are covered by versions of the GNU GPL, which is not
compatible with the Creative Commons license.

Interface to Tsukurimashou
IDSgrep is closely connected with the Tsukuimashou
font family [17]. They have the same author; it was
largely for use in Tsukurimashou development that
IDSgrep was developed at all; and IDSgrep’s source
control system is a subdirectory within Tsukuri-
mashou’s. Building IDSgrep in conjunction with
Tsukurimashou allows IDSgrep to extract from the
Tsukurimashou build system a dictionary of charac-
ter decompositions as they appear in Tsukurimashou.
The Tsukurimashou fonts are also necessary to build
this IDSgrep user manual. However, IDSgrep is also
distributed as a separate package, because it will be of
use to non-users of Tsukurimashou, and the Tsukuri-
mashou build system will not recurse into IDSgrep’s
directory and build IDSgrep by default; only if re-
quested.

IDSgrep is one of several parasite packages of
Tsukurimashou, using a mechanism introduced in
Tsukurimashou 0.7 and IDSgrep 0.4. Previous ver-
sions used a different interface.

11

To build Tsukurimashou with IDSgrep: specify
the “--enable-parasites” option to Tsukurimashou’s
configure script with an appropriate value, such as
“--enable-parasites=idsgrep”. See the Tsukurimashou
documentation for other possible values of this op-
tion. Building Tsukurimashou will then implicitly
build IDSgrep. It should be possible to pass IDSgrep
configure options to Tsukurimashou’s configure script
and have them automatically passed down the chain
(in the standard Autotools sub-package fashion) but
that is not well-tested.

To build Tsukurimashou without IDSgrep: this
is the default when you run the Tsukurimashou build
from the root of the Tsukurimashou distribution. The
IDSgrep source is included as a subdirectory in distri-
butions of Tsukurimashou, but only built on request.

For a more customized build of IDSgrep, with
or without Tsukurimashou: you can also run IDS-
grep’s configure in its own directory, and then do
make (and the usual targets) there. It will look
for Tsukurimashou (specifically, a build directory in
which Tsukurimashou’s configure has already been ex-
ecuted) as the parent directory and in a few other
places, or you can specify the location of a Tsukuri-
mashou build with the “--with-tsuku-build” option
to IDSgrep’s configure. If Tsukurimashou is not
available, IDSgrep will build without creating the
Tsukurimashou-derived dictionary file.

During IDSgrep’s build, if it can access a Tsukuri-
mashou build directory, it will recursively call make
eids on Tsukurimashou’s build system. That is a hook
that causes Tsukurimashou’s build system to gener-
ate the EIDS decomposition dictionary, which is then
copied or linked back into IDSgrep’s build directory
and can be installed with IDSgrep’s make install. IDS-
grep’s build will also look in Tsukurimashou’s build
directory for the font “Tsukurimashou Mincho” which
is needed to build this user manual, and will make re-
cursive calls to make for Tsukurimashou to build that
if necessary. This kind of upward-callback make invo-
cation is a little inefficient (in particular, it does not
handle jobserver mode well) so it is better, if you want
both packages, to use the centralized Tsukurimashou
build system, which will do its own thing first and
then call IDSgrep’s build near the end in a better-
integrated way. If you want to run “make install”
just on IDSgrep and not on Tsukurimashou (which
might be a reasonable thing to want because of oper-
ating system font installation issues), you should run
just “make” in Tsukurimashou’s directory, then cd to
IDSgrep’s directory and run “make install.”

�A note on TrueType/OpenType
This version of IDSgrep is designed to read TrueType
or OpenType files (the distinction between the two is
not relevant at this level) for character map informa-
tion. The specification for the TrueType/OpenType
file format reads like a parody. I’d like to take a
moment to complain about a few things.

• Although the format contains binary fields which
must be read in a specific byte order, one of the
two magic numbers that can identify the file for-
mat (for a single font as opposed to a “collec-
tion”) is 0x4F54544F, which is a palindrome at
the byte level and thus useless for detecting byte
order problems.

• The other possible magic number for non-
collection files is 0x00010000, which is quite
likely to occur in files that are not True-
Type/OpenType files, making it harder to detect
when one may have been passed a bad file.

• Many decades of research on error detection
codes were ignored in the design of the Open-
Type checksum algorithm, which (among other
issues) cannot detect any reordering of 32-bit
words unless it crosses a table boundary. At
least the algorithm produces its meaningless re-
sults fast; yay, efficiency!

• There are 32-bit byte offsets referenced to the
start of the file. There are 32- and 16-bit byte off-
sets referenced to the start of the current table.
There are 32- and 16-bit byte offsets referenced
to the locations of the offset fields themselves, so
a field at offset 0x1234 referring to another field
at offset 0x5678 will contain 0x4444. There are
also indices measured in units other than bytes.

• There are variable-length objects not tagged
with their lengths except indirectly: they are
presumably contained entirely within larger ob-
jects that are tagged with lengths.

• Consider the cmap format 4 subtable, which Mi-
crosoft says is their preferred format. It includes
four variable-length arrays each containing seg-
Count number of two-byte entries. The value of
segCount is not directly recorded anywhere, but
these values are all required in the header:

◦ 2 · segCount;

◦ 2 · 2⌊log2 segCount⌋;

12

◦ log2(2 · 2⌊log2 segCount⌋/2) (which is de-
scribed like that in the spec); and of course

◦ 2 · segCount − 2 · 2⌊log2 segCount⌋.

• The bizarre length-derived values in the for-
mat 4 header (and other similar sets of table-
size-logarithm numbers that occur elsewhere in
the file format) appear to be designed to sup-
port someone’s binary search code. Instead of
computing those numbers itself starting from
the length, the search code can just use values
straight from the table to initialize its variables.
Consider what would happen if someone actually
did that as the designers apparently intended,
and the numbers happened to be incorrect in
the file. If, for instance, numbers in the file
were swapped around on 32-bit boundaries, the
checksums wouldn’t detect a problem; and the
speed demons who think they need precomputed
logarithms probably aren’t wasting time check-
ing checksums anyway. The code isn’t checking
whether the numbers are consistent (because to
do that you would have to calculate them fresh,
and then why bother storing them in the first
place?), so it will end up “searching” into ran-
dom areas of the file, or into uninitialized mem-
ory beyond. Now think about the relative costs
of disk reads, network transfer, and arithmetic,
and consider whether having those values precal-
culated and stored in the file would actually save
any time even if they could be trusted.

• The cmap format 4 subtable consists of, in this
order: fixed-length stuff totalling 14 bytes; one
variable-length array of length 2·segCount bytes;
one more two-byte fixed-length field; three more
variable-length arrays each of length 2 ·segCount
bytes; and finally, one more variable-length array
whose length is not directly specified anywhere
but could presumably be inferred by subtracting
from the known size of the overall table. The
four 2 · segCount-byte arrays are actually the re-
arranged slices of a single logical array whose
elements are four-field structures; but the extra
reserved two bytes stuck in the middle of the
table make a straightforward transposition im-
possible. Four-tuples of the same kind with the
same four fields also occur in the format 2 sub-
table; but there, they occur as a single array with
each record written in an 8-byte block.

• It is an intended, documented feature that

some of the variable-length arrays in True-
Type/OpenType may overlap with each other.
As a result, bounds-checking, in addition to be-
ing intrinsically difficult because of the lack of in-
formation, would cause the reader to reject some
files that the specification claims are legitimate.

• Code-injection bugs allowing execution of arbi-
trary code in a privileged context have been re-
ported in software that implemented this file for-
mat without bounds-checking. This should sur-
prise no one.

IDSgrep attempts to do all reasonable bounds-
checking on the fields it needs, and to ignore fields it
does not need; given a bad TrueType/OpenType file,
it is intended that IDSgrep should be able to make
the best of it and at worst fail gracefully with an error
message. It should not be possible to crash IDSgrep
by giving it a bad font file to read.

However, the nature of the file format means that
at least in the current version, we can’t be confi-
dent all possible problems have been foreseen and
excluded. Let me know if you find a font file that
makes IDSgrep crash and I’ll try to fix it. IDSgrep
probably should not be allowed to read font files sup-
plied by untrusted sources such as Web users.

13

Invoking idsgrep
The command-line idsgrep utility works much like

most other command-line programs, and like grep [8]
in particular. It takes options and other arguments.
The first non-option argument is an EIDS represent-
ing the matching pattern, and any remaining non-
option arguments are taken as filenames to read. If
there are no filenames, idsgrep will read from standard
input. Output always goes to standard output.

When there is more than one file being read (ei-
ther by direct specification or indirectly with the -d
dictionary option), idsgrep will preface each EIDS in
its output with “:⟨filename⟩:” to indicate in which
file the EIDS was found. Note that under the EIDS
syntax rules, that creates a unary node senior to the
entire tree, so that the output remains in valid EIDS
format, except in the case of filenames containing
colons, which will be handled via backslash escapes
in the future when those are fully implemented for
output.

Command-line options

-c, --cooking Select the output generation and input
canonicalization mode. Requires one argument,
which may be one of the keywords raw, rawnc,
ascii, cooked, or indent, to specify a preset mode;
or a string of up to twelve decimal digits to con-
trol the output in more detail. The default mode
is raw. See the section on “cooked output” in this
manual for more details.

-d, --dictionary Read a dictionary from the standard
location. There is a pathname for dictionar-
ies hardcoded into the idsgrep binary, generally
{prefix}/share/dict, and if this option is given,
its argument (which may be empty) will be ap-
pended to the dictionary directory path, followed
by “*.eids,” and then treated as a shell glob
pattern. Any matching files are then searched
in addition to those otherwise specified on the
command line. A small added wrinkle is that
when more than one file is searched (resulting
in :filename: tags on the output lines), any of

them that came from the -d option will be ab-
breviated by omitting the hardcoded path name.
The purpose of this option is to cover the com-
mon case of searching the installed dictionaries.
Just specifying “-d” will search all the installed
dictionaries; specifying an abbreviation of the
dictionary name, as “-dt” or “-dk,” will search
just the matching one; and it remains possible
to specify a file exactly or use standard input in
the usual grep-like way.

-f, --font-chars Read a font file and make its charac-
ter coverage available as a user-defined match-
ing predicate through the “#” matching opera-
tor. In the current version, this feature can only
read TrueType and OpenType files that contain
Unicode (or near equivalent) mappings described
with cmap subtable types 0, 2, 4, 12, or 13. This
option may be specified multiple times, with suc-
cessive invocations corresponding to user-defined
predicates 1, 2, 3, and so on. The maximum
number of user-defined predicates is limited to
the number of bits in the largest integer type
available to the C compiler; 32 or 64 on many
systems.

-h, --help Display a short summary of these options.

-C, --colour, --color Colourize the output with ANSI
terminal escape sequences. The long form takes
an optional argument which may be “always,”
“auto,” or “never.” The default is “auto” if the
long form option is specified with no argument,
and the short form -C which does not take an
argument is equivalent to --color=auto, but not
specifying a colour option at all is the same as
specifying “never.” In “auto” mode, IDSgrep will
colourize if and only if standard output is a ter-
minal.

-G, --generate-index Instead of searching for trees that �
match a matching pattern, generate and write to
standard output a bit vector index of the speci-
fied file or files. This index, if written to a file-
name with a .bvec extension and placed alongside

14

the input that generated it in a correspondingly-
named .eids file, may speed up future searches.
This feature is normally invoked automatically
during program installation; users will only need
to use it directly if they are building their own
dictionaries. No matching pattern will be taken
from the command line; all non-option argu-
ments will be read as filenames. The -U option
will be ignored. If there is more than one input
file, the results for them will be concatenated,
which is unlikely to be useful. See the chapter
on bit vector indices in this manual for more in-
formation.

-I, --ignore-indices Do not look for or use any bit
vector indices.

-U, --unicode-list Generate a dictionary of Unicode
code points, and read that before reading any
other dictionaries or input files that may be spec-
ified. The generated dictionary consists of a
single line for each of the code points U+0000
through U+10FFFF in ascending order, exclud-
ing the surrogates but not any other invalid or
non-character code points; on each line, there is a
tree whose head is the character and whose body
is either a nullary semicolon or (if the optional
argument to -U was specified) a nullary functor
containing semicolon-separated pieces of infor-
mation selected by the characters of the optional
argument. Characters permitted in the argu-
ment are “b” for the Unicode block name; “d” for
the decimal value of the code point; and “x” for
the hexadecimal value with “U+.” For example,
specifying “-Uxdb” will generate and scan a dic-
tionary that includes the line “<A>(U+0041;65;Basic
Latin).” This option is intended to be used to-
gether with -f to produce font coverage lists.
Bit vector indexing is of no use for the internally-�
generated Unicode list, but when the query tree
has a head, IDSgrep will generate only the at
most one dictionary entry that could match that
query, giving something very much like the ben-
efit of bit vector indexing. This option generates
the entries as EIDS trees in an internal format,
not as a byte stream, bypassing the input parser,
so output from -U is always cooked even when a
raw mode is selected with -c to be used for real
input.

-V, --version Display the version and license informa-
tion for IDSgrep.

--bitvec-debug Report detailed bit vector debugging �
and performance information to standard er-
ror. The information reported is terse, undoc-
umented, and probably not of interest to most
users. Whereas in ordinary operation, idsgrep
will silently switch to plain tree-matching should
the bit vector index be unavailable or invalid,
with this option the absence of a valid bit vector
index for an input file will be treated as a fatal
error.

--disable-bdd Disable the BDD filtering layer (option �
exists only on binaries that contain this layer in
the first place). Index files will still be read, and
a BDD filter will still be constructed, but the
code that invokes the BDD filter will instead re-
turn a hardcoded “possible match” result. This
option is intended only for testing and debugging
purposes. To disable bit vector filtering entirely
(and, in particular, to avoid opening and reading
any index file), use -I.

--disable-bdd Disable the lambda filtering layer. In- �
dex files will still be read, and a lambda filter
will still be constructed, but the code that tests
the lambda filter will return a hardcoded “possi-
ble match” result. Like --disable-bdd, this option
is intended only for testing and debugging pur-
poses.

--statistics Report a line of machine-readable per- �
formance information to standard output at the
end of the run. This may be useful in optimiz-
ing the bit vector features. See the chapter on
bit vectors in this manual for more information
about the format and significance of the statis-
tics.

Environment variables
The idsgrep utility recognizes just one environment
variable, IDSGREP_DICTDIR, which if present specifies a
directory for the -d option to search instead of its
hardcoded default.

Note that idsgrep does not pay attention to any
other environment variables, and in particular, not
LC_ALL and company. The input and output of this
program are always UTF-8 encoded Unicode regard-
less of locale settings. Since the basic function of this
program is closely tied to the Unicode-specific “ideo-
graphic description characters,” it would be difficult
if not impossible for it to work in any non-Unicode
locale. Predictability is also important because of

15

the likely usefulness of this software in automated
contexts; if it followed locale environment variables,
many users would have to carefully override those all
the time to be sure of portability. Instead of creating
that situation, idsgrep by design has a consistent in-
put and output format on all systems and users are
welcome to pipe things through a conversion program
if necessary.

16

Technical details
This section is intended to describe IDSgrep’s syn-

tax and matching procedure in complete precise de-
tail; and those things are, in turn, designed to be
powerful rather than easy. As a result, the descrip-
tion may be confusing for some users. See the exam-
ples in the “Quick start” section for a more accessible
introduction to how to use the utility.

The system is best understood in terms of three
interconnected major concepts:

• an abstract data structure;

• a syntax for expressing instances of the data
structure as “Extended Ideographic Description
Sequences” (EIDSes);

• a function for determining whether two instances
of the data structure “match.”

Then the basic function of idsgrep is to take one
EIDS as a matching pattern, scan a file containing
many more, and write out the ones that match the
matching pattern. The three major concepts are de-
scribed, one each, in the following sections. A final
section describes options for how the command-line
idsgrep program generates EIDS syntax on output.

The data structure
An EIDS tree consists of the following:

• An optional head, which if present consists of a
nonempty string of Unicode characters.

• A required functor, which is a nonempty string
of Unicode characters.

• A required arity, which is an integer from 0 to 3
inclusive.

• A sequence of children, of length equal to the
arity (no children if arity is zero). Each child is,
recursively, an EIDS tree.

Trees with arity zero, one, two, and three are re-
spectively called nullary, unary, binary, and ternary.

Note that these “nonempty strings of Unicode
characters” will very often tend to be of length one
(single characters) but that is not a requirement.
They cannot be empty (length zero); the case of a
tree without a head is properly described by “there
is no head,” not by “the head is the empty string.”
At present no Unicode canonicalization is performed,
that being left to the user, but this may change in
the future. Zero bytes (U+0000) are in principle
permitted to occur in EIDS trees, but because Unix
passes command-line arguments as null-terminated C
strings, they can only be entered in matching pat-
terns via backslash escape sequences.

Typically, these trees are used to describe kanji
characters. The literal Unicode character being de-
scribed will be the head, if there is a code point for it;
the functor will be either an ideographic description
character like ⿱ if the character can be subdivided,
or else nullary ; if not. Then the children will corre-
spond to the parts into which it can be decomposed.
Some parts of the character may also be available
as characters with Unicode code points in their own
right; in that case, they will have heads of their own.

EIDS syntax
Unicode’s IDS syntax serves a similar purpose to IDS-
grep’s extended IDS syntax, but it lacks sufficient
expressive power to cover some of IDSgrep’s needs.
Nonetheless, EIDS syntax is noticeably derived from
that of Unicode IDSes. Broadly speaking, EIDSes are
IDSes extended to include heads (which we need for
partial-character lookup); bracketed strings as func-
tors (which we need for capturing arbitrary data);
and with arbitrary limits on allowed characters and
length relaxed (needed for complex characters and so
that matching patterns can be expressed in the same
syntax).

Here are some sample EIDSes:
大
⿱田⿰虫⿱土土
⿸厂⿱今止
【萌】⿱艹<明>⿰日月
【店】⿸广<占>⿱卜口

17

⿱艹⿰日?
&...男...女
[tb]艹[or][lr]?日[lr]日?

The first three of these examples are valid in the
Unicode IDS syntax. The next two contain heads,
and are typical of what might exist in a dictionary
designed to be searched by the idsgrep command-line
utility. The last three might be matching patterns a
user would enter.

EIDS trees are written in a simple prefix notation
that could be called “Polish notation” inasmuch as it
is the reverse of “reverse Polish notation.” To write a
tree, simply write the head if there is one, the functor,
and then if the tree is not nullary, write each of the
children. Heads and the functors of trees of different
arity are (unless otherwise specified below) written
enclosed in different kinds of brackets that indicate
the difference between heads and functors, and the
arity of the tree when writing a functor.

The basic ASCII brackets for heads and functors
are as follows:

head < > <example>
nullary functor (0) () (example)
unary functor (1) . . .example.
binary functor (2) [] [example]
ternary functor (3) { } {example}

Note that the opening and closing brackets for
unary functors are both equal to the ASCII period,
U+002E.

Some sequences of Unicode characters beginning
with “\” (ASCII backslash, U+005C) are treated spe-
cially. Backslash followed by a character from a short
list of ASCII Latin letters introduces an escape se-
quence used to substitute for a character that would
otherwise be hard to type; backslash followed by
any other character (including a second backslash)
is equivalent to the other character, but without any
special meaning it would otherwise have had. Thus,
backslash can be used for instance to include literally
in a bracketed string the closing bracket that other-
wise would mark the end of the string.

The backslash-letter escapes are listed below.
Note that the letters identifying the type of escape
sequence are case-sensitive, and all are lower-case ex-
cept “\X.” However, for sequences that take a param-
eter, the parameters are not case-sensitive. Note that
all characters inside an escape sequence must be lit-
eral ASCII, except in the “default” case of a single
backslash used to escape a single non-ASCII charac-
ter. It is not permitted to use recursive backslash
escapes to create some of the characters that make

up a multi-character escape sequence like “\x{}.”
\a ASCII BEL (U+0007)
\b ASCII BS (U+0008)
\cX ASCII control character X
\e ASCII ESC (U+001B)
\f ASCII FF (U+000C)
\t ASCII HT (U+0009)
\n ASCII LF (U+000A)
\r ASCII CR (U+000D)
\xHH two-digit Unicode hex
\XHHHH four-digit Unicode hex
\x{Hx} \X{Hx} variable-length Unicode hex

The \c escape takes a parameter consisting of a
single ASCII Latin letter character (only); it is equiv-
alent to typing Ctrl plus that letter (case insensi-
tive) on a standard keyboard, that is the ASCII con-
trol code in the range U+0001 to U+001A obtained
by subtracting 64 from the uppercase letter’s ASCII
code or 96 from the lowercase letter’s ASCII code.

The hexadecimal escapes \x and \X offer a choice
of two-digit, four-digit, or variable-length (enclosed
by curly braces) hexadecimal specification of Unicode
code points. The hex codes are case-insensitive. Val-
ues greater than 10FFFF, and therefore outside the
Unicode range, will be replaced by the Unicode re-
placement character U+FFFD.

Parsing of bracketed strings has a few features
worth noting. First, there is no special treatment of
nested brackets. After the “<” that begins a head, for
instance, the next unescaped “>” will end the head,
regardless of how many other instances of “<” have
been seen. However, because no head or functor can
be less than one character long, a closing bracket
immediately after the opening bracket (which would
otherwise create an illegal empty string) is specially
treated as the first character of the string and not as
a closing bracket. Thus, “())” is legal syntax for a
functor equal to a closing parenthesis, in a nullary
tree; and “...” is a functor equal to a single ASCII
period in a unary tree, an important example be-
cause it is the commonly-used match-anywhere oper-
ator. A bracket character specified via a backslash es-
cape, whether by preceding the literal character with
a backslash or by giving its hexadecimal code in a
“\x” or “\X” construction, is never taken to start or
end a bracketed string.

Each pair of ASCII brackets also has two pairs of
generally non-ASCII synonyms, as follows:

18

< > 【 】 〖 〗
() （ ） ｟ ｠
. . : : ・ ・
[] ［ ］ 〚 〛
{ } 〔 〕 〘 〙

The closing synonymous brackets for functors of
unary trees are always identical to the opening brack-
ets. A string may be opened by any of the three
opening bracket characters for its type of string; but
then it must be closed by the closing bracket char-
acter that goes with the opening bracket. Brackets
from other pairs are taken literally and do not end the
string. For instance, “【<example>】” is a head whose
value consists of “<example>” including the ASCII an-
gle brackets. There are several reasons for the exis-
tence of the synonyms:

• They look cool.

• There is an established tradition of using
【lenticular brackets】 for heads in printed dic-
tionaries, which is exactly their meaning here.

• Allowing ASCII colons to bracket unary-node
functors makes possible a more appealing and
grep-like syntax for idsgrep’s output in the case
of processing multiple input files.

• Allowing more than one way to bracket each kind
of string makes it easier to express bracket char-
acters that may occur literally in a string.

• The non-ASCII brackets may be easier to type
without switching modes in some input methods.

• On the other hand, keeping an ASCII option for
every bracket type allows matching patterns to
be entered on ASCII-only terminals.

• Multiple bracket types allow for creating human-
visible computer-invisible distinctions in dictio-
nary files, for instance to flag pseudo-entries that
contain metadata, without needing to create a
special syntax for comments.

If a character other than an opening bracket oc-
curs unescaped in an EIDS where an opening bracket
would be expected, it is treated in one of three ways.

• ASCII whitespace and control characters,
U+0000 to U+0020 inclusive, are ignored. In the
future, this treatment might be extended to non-
ASCII Unicode whitespace characters, which are
best avoided because of the uncertainty.

• Some special characters, such as “⿰,” have “sug-
ary implicit brackets.” If one of these characters
appears outside of brackets, it will be interpreted
as a functor whose value is a single-character
string equal to the literal character, and a fixed
arity that depends on which character it is. For
instance, “⿰” and “[⿰]” will be parsed identi-
cally. A list of characters getting this treatment
is below.

• Any other non-bracket character has a “syrupy
implicit semicolon.” That means it will be inter-
preted as a complete nullary tree with a single-
character head equal to the literal character, and
a single semicolon as the functor. For instance,
“x” and “<x>(;)” will be parsed identically. Be-
cause semicolon itself has sugary implicit nullary
brackets, we could also write “<x>;” for the same
effect.

Here are all the characters that have sugary im-
plicit brackets, with the brackets they imply: (;) (?)
.!. ./. .=. .*. .@. .#. [&] [,] [|] [⿰] [⿱] [⿴]
[⿵] [⿶] [⿷] [⿸] [⿹] [⿺] [⿻] {⿲} {⿳}

Note that the sugary and syrupy implications of a
character are only relevant when the character occurs
where an opening bracket of some type would other-
wise be required; inside a bracketed string, characters
are taken literally unless they end the string or make
up escape sequences. Characters created by escape
sequences are always syrupy outside a string and al-
ways literal inside a string; they never start or end
bracketed strings nor have any special sugary mean-
ing they would otherwise have.

Characters, for the purposes of EIDS parsing, are
strictly single Unicode code points. Such things as
combining accents and variation selectors are parsed
as separate characters from the bases to which they
may be applied. The sugary and syrupy parsing rules
apply only to single characters. Thus, appropriate
brackets are necessary whenever a sequence contain-
ing more than one code point is to be treated as a
single head or functor.

It is an intentional consequence of these rules that
all syntactically valid Unicode IDSes are syntactically
valid EIDSes, but the converse is not true. CHISE
IDS extended IDSes can easily be converted to this
syntax but in general are not valid IDSgrep EIDSes
in themselves.

Although it is technically not a parsing issue but
rather a transformation applied to the tree after pars-
ing, there is one more issue to mention: some functors

19

have aliases. If a functor and arity matches one of the
aliases on the following list, it will be replaced with
the indicated single-character functor. The idea is
to provide verbose ASCII names for single-character
functors of special importance to the matching al-
gorithm. Note that the single-character versions are
always the canonical ones, and although the brackets
are shown explicitly for clarity, they are nearly all
characters from the “sugary implicit” list. This fea-
ture may be disabled or modified using some settings
of the “-c” command-line option; see the section on
output cooking for more information.

(anything) ⇒ (?) .anywhere. ⇒ ...
.not. ⇒ .!. .regex. ⇒ ./.
.equal. ⇒ .=. .unord. ⇒ .*.
.assoc. ⇒ .@. .user. ⇒ .#.
[and] ⇒ [&] [or] ⇒ [|]
[lr] ⇒ [⿰] [tb] ⇒ [⿱]

[enclose] ⇒ [⿴] [wrapu] ⇒ [⿵]
[wrapd] ⇒ [⿶] [wrapl] ⇒ [⿷]
[wrapul] ⇒ [⿸] [wrapur] ⇒ [⿹]
[wrapll] ⇒ [⿺] [overlap] ⇒ [⿻]
{lcr} ⇒ {⿲} {tcb} ⇒ {⿳}

The idsgrep command-line utility attempts to fol-�
low Postel’s Law with respect to byte sequences that
are not valid UTF-8: “be conservative in what you
do, be liberal in what you accept from others.” [15]
Jesus of Nazareth stated a similar principle somewhat
earlier.* Accordingly, invalid UTF-8 on input is not
in general treated as a fatal error. Handling of in-
valid UTF-8 represents a delicate balance of security
issues: if invalid UTF-8 is treated as completely fa-
tal, that creates the possibility for denial of service
attacks, but if it is permitted to too great an extent,
it can create opportunities for things like buffer over-
flows. In general, the idsgrep utility will not itself
break when given bad UTF-8, nor will it make mat-
ters worse compared to a system that did not include
idsgrep, but idsgrep cannot be counted on to actively
protect some other piece of software that would oth-
erwise be vulnerable to bad UTF-8.†

The parser will skip over (as if they did not ex-
ist at all) byte sequences that are not valid UTF-
8, including the forbidden bytes 0xC0, 0xC1, and
0xF5 through 0xFF; continuation bytes outside valid
multibyte sequences; “overlong” sequences (those
that would otherwise be valid, but encode a given

*“There is nothing from without a man, that entering into
him can defile him: but the things which come out of him,
those are they that defile the man.” (Mark 7:15, KJV)

†Genesis 4:9.

code point other than in the shortest possible way);
surrogates; and sequences that encode code points
outside the Unicode range. Depending on where they
occur within a multibyte sequence, some of these
things may result in the whole sequence being skipped
instead of just the bad bytes, with the parser making
its best guess as to what that means. Be aware that
some other software may treat some of these things
as valid.

When a code point outside the Unicode range, or a
surrogate, is specified using a backslash hexadecimal
escape, the parser will interpret it as if the substitute
character U+FFFD had been specified instead. All
UTF-8 sequences actually generated by the idsgrep
program are guaranteed to be valid UTF-8, barring
serious programming errors; and matching operations
including PCRE matches occur only on the parsed
internal representation which is valid UTF-8. Note
that PCRE, despite having a deprecated syntax for
sub-encoding byte matching, cannot be used to de-
tect invalid bytes that the idsgrep parser skipped; it
sees only what the parser validly parsed. However,
since in its default mode the idsgrep program will echo
through to the output the exact input byte sequence
that was parsed to create a tree, not the internal rep-
resentation, it is possible that non-UTF-8 input could
result in non-UTF-8 output. Several cooked output
modes, in which idsgrep generates its own UTF-8 from
the internal representation and provides guarantees
of valid UTF-8 or even valid ASCII output, are avail-
able but non-default.

Some byte sequences that are valid UTF-8 but
not valid Unicode, for instance the sequence that en-
codes a reversed byte order mark, may possibly go
undetected in the input and be allowed in the output,
even when cooked, by the current version of idsgrep.
It is intended that idsgrep should detect that kind of
thing where it is reasonable to do so, and future ver-
sions may do it better than this one does; but some
higher-level errors in Unicode usage, such as misuse
of combining characters or variation selectors, will
probably never fall within the scope of idsgrep.

Matching
The basic function of the idsgrep command-line util-
ity is to evaluate each item in the database against a
matching pattern. The matching patterns are sim-
ilar in spirit to the “regular expressions” common
throughout the Unix world; however, for theoreti-
cal and practical reasons standard regular expressions
would be unsuitable for the applications considered

20

by IDSgrep.
The main theoretical issue is that IDSes, whether

IDSgrep-style “extended” or Unicode-style tradi-
tional ones, belong to the class of context-free lan-
guages. They describe tree-like structures nested to
arbitrary depth, similar in nature to programming-
language expressions containing balanced parenthe-
ses although balanced parentheses as such are not ac-
tually part of EIDS syntax. The natural way to parse
these involves an abstract machine with a stack-like
memory that can assume an infinite number of dif-
ferent states. Regular expressions can only be used
to recognize the smaller, simpler class of regular lan-
guages, parsable by an abstract machine with a finite-
state memory. It is not possible to write a correct
regular expression that will match balanced paren-
theses. Some advanced software implementations of
so-called “regular expressions” (for instance, Perl’s)
contain special features that make them more pow-
erful than the standard theoretical model, so that
they are capable of recognizing some languages that
are non-regular, including balanced parentheses. It is
also possible to fake a stack with a finite depth limit
by writing a complicated regular expression, and that
may be good enough in some practical cases. Some
users may also settle for just doing a substring query
with grep and calling the result close enough. But
IDSgrep tries to do it in a way that is really right,
and that is described precisely in this section.

We will define a function match(x, y) which takes
two EIDS trees as input and returns a Boolean value
of true or false. We call x the pattern or needle and
y the subject or haystack. The idsgrep command-line
utility generally takes x from its command line and
repeatedly evaluates this function for each EIDS it
reads from its input; it then writes out all the values
of y for which match(x, y) is true.

The match(x, y) function is defined as follows:

• If x and y both have heads, then match(x, y)
is true if and only if their heads are identical.
Nothing else is examined (in particular, not the
children). Then the two cases below do not ap-
ply.

• If x and y do not both have heads, then
match(x, y) = match′(x, y), whose value gener-
ally depends on the functor and arity of x. The
match′ function has many special cases described
in the subsections below, expressing different
kinds of special matching operations. These op-
erations roughly correspond to the ASCII char-

acters with sugary implicit brackets in EIDS syn-
tax. They are shown with brackets for clarity in
the discussion below, but users would generally
type them without the brackets and depend on
the sugar in actual use.

• If none of the subsections below applies, then
match′(x, y) is true if and only if x and y
have identical functors, identical arities, and
match(xi, yi) is true recursively for all their cor-
responding children xi, yi. Note that match′ re-
curses to match, not itself, so there is a chance
for head matching on the children even if it was
not relevant to the parent nodes.

Match anything The value of match′((?), y) is al-
ways true. Thus, ? can be used as a wildcard in
idsgrep patterns to match an entire subtree regard-
less of its structure. Mnemonic: question mark is a
shell wildcard for matching a single character. The
verbose ASCII name for “(?)” is “(anything).”

Match anywhere The value of match′(...x, y) is
true if and only if there exists any subtree of y (in-
cluding the entirety of y) for which match(x, y) is
true. In other words, this will look for an instance
of x anywhere inside y regardless of nesting level.
Mnemonic: three dots suggest omitting a variable-
length sequence, in this case the variable-length chain
of ancestors above x. The verbose ASCII name for
“...” is “.anywhere..”

Match children in any order The value of
match′(.*.x, y) is true if and only if there exists a per-
mutation of the children of y such that match(x, y′) is
true of the resulting modified y′. For instance, *[a]bc
matches both [a]bc and [a]cb. This is obviously a no-
operation (matches simply if x matches y, as if the
asterisk were not applied) for trees of arity less than
two. Mnemonic: asterisk is a general wildcard, and
this is a general matching operation. The verbose
ASCII name for “.*.” is “.unord..”

NOT The value of match′(.!.x, y) is true if and
only if match(x, y) is false. It matches any tree not
matched by x alone. Mnemonic: prefix exclama-
tion point is logical NOT in many programming lan-
guages. The verbose ASCII name for “.!.” is “.not..”

AND The value of match′([&]xy, z) is true if and
only if match(x, z) ∧ match(y, z). In other words, it

21

matches all trees that are matched by both x and y;
the set of strings matched by [&]xy is the intersec-
tion of the sets matched by x and by y. Mnemonic:
ampersand is logical or bitwise AND in many pro-
gramming languages. The verbose ASCII name for
“[&]” is “[and].”

OR The value of match′([|]xy, z) is true if and
only if match(x, z) ∨ match(y, z). In other words, it
matches all trees that are matched by at least one
of x or y; the set of strings matched by [|]xy is the
union of the sets matched by x and by y. Mnemonic:
ASCII vertical bar is logical or bitwise OR in many
programming languages. The verbose ASCII name
for “[|]” is “[or].”

Literal tree matching If x and y both have heads,
then the value of match′(.=.x, y) is true if and only
if those heads are identical. Otherwise, it is true if
and only if x and y have identical functors, identi-
cal arity, and match(xi, yi) is true for each of their
corresponding children.

The effect of this operation is to ignore any special
match′() semantics of x’s functor; the trees are com-
pared as if that functor were just an ordinary string,
regardless of whether it might normally be special.
Note that the full match() is still done on the children
with only the root taken literally; to do a completely
literal match of the entire trees it is necessary to in-
sert an additional copy of .=. above every node in the
matching pattern, or at least every node that would
otherwise have a special meaning for match′(), and
even then heads will continue to have their usual ef-
fect of overriding recursion.‡ Mnemonic: equals sign
suggests the literal equality that is being tested rather
than the more complicated comparisons that might
otherwise be used. The verbose ASCII name for “.=.”
is “.equal..”

For instance, this feature could allow searching for
a unary tree whose functor actually is !, where just
specifying such a tree directly as the matching pat-
tern would instead (under the rule for “NOT” above)
search for trees that do not match the only child of
!. In the original application of searching kanji de-
composition databases this operation is unlikely to
be used because the special functors do not occur

‡It may be interesting to consider how one could write a pat-
tern to test absolute identity of trees, with each node matching
if and only if its head or lack thereof is identical to the desired
target as well as the functors and arities matching and the
same being true of all children.

anyway, but it seems important for potential appli-
cations of IDSgrep to more general tree-querying, be-
cause otherwise some reasonable things people might
want to look for could not be found at all.

Associative matching The value of match′(.@.x, y)
is calculated as follows. Create a new EIDS tree
x′, initially equal to x, which has the property that
its root may be of unlimited arity. Then for every
child of x′ whose functor and arity are identical to
the functor and arity of x, replace that child in x′

with its children, in order. Repeat that operation
until no more children of x′ have functor and arity
identical to the functor and arity of x. Compute y′

from y by the same process. Then match′(.@.x, y) =
match(.=.x′, y′).

This matching operator is intended for the case
of three or more things combined using a binary op-
erator that has, or can be said to sometimes have,
an associative law. For instance, the kanji 怠 could
be described by “⿱⿱厶口心” (⿱厶口 over 心) or by
“⿱厶⿱口心” (厶 over ⿱口心). Unicode might encour-
age use of the ternary operator ⿳ for this particular
case instead, but that does not cover all reasonably-
occurring cases, and the default databases seldom if
ever use the Unicode ternary operators.

The difference between the representations is
sometimes useful information that the database
should retain; for instance, in the case of Tsukuri-
mashou, “⿱⿱厶口心,” “⿱厶⿱口心,” and “⿳厶口心”
would correspond to three very different stanzas of
MetaPost source code, and the user might want a
query that separates them. On the other hand, the
user might instead have a more general query along
the lines of “find three things stacked vertically with
心 at the bottom” and intend that that should match
both cases of binary decomposition. The at-sign
matching operation is meant for queries that don’t
care about the order of binary operators; without
it, matching will by default follow the tree structure
strictly.

Note that even with .@., IDSgrep will not con-
sider binary operators in any way interchangeable
with ternary ones; users must still use .|. to achieve
such an effect if desired. Although the at-sign is fully
defined for all arities, it is only intended for use with
binary trees. Note also that .@. and .*. behave
according to their definitions. Incautious attempts
to use them together will often fail to have the de-
sired effects, because the definitions do not include
special exceptions that some users might intuitively

22

expect for these two operators happening to occur
near each other. In a pattern like “*@[a][a]bcd,” .*.
will recognize .@. as the functor of a unary tree and
expand the single permutation of its one child, and so
that pattern will match the same things as if the as-
terisk had not been present, namely “[a][a]bcd” and
“[a]b[a]cd]” but not, for instance, “[a][a]dcb.” In a
pattern like “@[a]b*[a]cd,” .@. will recognize .*. as
a different arity and functor from [a] and choose not
to expand it in x′, with the result that that pattern
matches the same things as if the at-sign had not
been present, namely “[a]b[a]cd” and “[a]b[a]dc” but
not “[a][a]bcd” nor “[a][a]bdc.”

When considered as an operation on trees, what
.@. does is fundamentally the same thing as the alge-
braic operation that considers (a + b) + c equivalent
to a + (b + c), and for that reason it is called “asso-
ciative” matching. The mnemonic for at-sign is that
it is a fancy “a” for “associative.” The verbose ASCII
name for “.@.” is “.assoc..”

Regular expressionmatching If x and y both have
heads, then match′(./.x, y) is true if and only if the
head of x, considered as a regular expression, matches
the head of y. If x and y do not both have heads,
then match′(./.x, y) is true if and only if x and y
have the same arity, the functor of x considered as
a regular expression matches the functor of y, and
match(xi, yi) is true for each of their corresponding
children. This operation is basically the same as the
default matching operation, except that regular ex-
pression matching is used instead of strict equality
for testing the heads and functors. Mnemonic: slash
means regular expression matching in Perl. Verbose
ASCII name: “.regex..”

Regular expression matching for the purposes of�
this operator is as defined by the Perl Compatible
Regular Expressions library, in whichever version was
linked with the idsgrep utility. Strings are passed into
PCRE as UTF-8, and are guaranteed (because the
EIDS parser decodes and re-encodes idsgrep’s input
for internal use) to be valid UTF-8 when PCRE sees
them regardless of user input; as such, PCRE is given
the option flags that make it read UTF-8 without
doing its own validity check. Use of the PCRE “\C”
syntax for matching individual octets within UTF-8
is strongly not recommended. All other PCRE op-
tions are left to the defaults chosen when PCRE was
compiled, even if those are silly. The character ta-
bles are PCRE’s “C locale” defaults, not generated
at runtime from the current locale. Things like case

sensitivity can be controlled within the pattern using
PCRE’s syntax for doing so. In the event that idsgrep
was compiled without the PCRE library (which is not
recommended, but is possible), or that PCRE was
compiled without UTF-8 support, then an attempt
to evaluate the slash operator will trigger a fatal er-
ror.

A matching pattern given to PCRE will have al-
ready passed through the EIDS parser, which re-
moves one level of backslash escaping. The pattern
may also have been passed as a command-line argu-
ment to idsgrep by a shell, which may have undone
another level of backslash escaping. Thus, it may
be necessary to escape characters as many as three
times in order to match them literally with the slash
operator. Each of these levels may differ from the
others in terms of the escape sequences it supports
and their exact meanings. In many cases it doesn’t
really matter which level of processing evaluates the
escaping. For instance, “idsgrep "/(\t)",” (shell evalu-
ates “\t,” EIDS and PCRE see a literal tab); “idsgrep
"/(\\t)",” (shell removes one backslash, EIDS eval-
uates “\t,” PCRE sees a literal tab); and “idsgrep
"/(\\\\t)",” (shell removes two backslashes, EIDS re-
moves one, PCRE evaluates “\t”) will all match the
same things. If it matters, however, then caution is
necessary.

PCRE because of the limitations of its API ef-
fectively forbids zero bytes (U+0000) in its matching
patterns, whereas EIDS allows them to exist within
strings in general. The complexities of PCRE pattern
syntax make it impractical for idsgrep to automati-
cally escape zero bytes before passing the strings to
PCRE; there are too many different cases possible for
the context in which a zero byte might occur. Since
the idsgrep utility takes its matching patterns from
the Unix command line anyway, and Unix itself for-
bids literal zero bytes in command-line arguments,
the case of literal zero bytes in a matching pattern
can only occur when they are created deliberately by
escape sequences at the level of the EIDS parser; and
the simplest advice to users is “don’t do that!”

Python, which like EIDS allows strings to con-
tain zero bytes but has PCRE bindings and so faces
the same issue, briefly attempted to work around this
PCRE API limitation by auto-escaping. They even-
tually gave it up as too complicated and confusing.
The consequence of PCRE’s API design is that if the
string given as a matching pattern contains a literal
zero byte then the regular expression to be matched
will consist of the prefix of the string up to but not

23

including the first zero byte; anything after that will
be ignored. Zero bytes are, nonetheless, permitted in
the matching subject, and PCRE can search for them,
but not by means of literal zero bytes in the pattern.
For instance, the PCRE syntax “\000” (or just “\0” if
the next character will not be an octal digit) matches
a zero byte. As discussed above, additional escaping
might be needed to ensure that PCRE, and not EIDS
nor the shell, interprets the backslash escape.

User-defined matching predicates It is assumed
that by some out-of-band means, we have defined a
family of functions Ui() for i from 1 up to some k.
These functions take EIDS trees as input and return
Boolean values (hence “predicates”).

Then the value of match′(.#.x, y) is determined as
follows. First, an integer i is computed. If x has a
head, its initial characters will be parsed as an ASCII
decimal number using the C library’s atoi(3) func-
tion; i is the resulting value, if it is positive. If x
has no head, the head of x cannot be parsed, or the
head of x is parsed as zero or negative, then i is de-
fined to be 1. Having defined i, if Ui() exists then
match′ = Ui(y). If Ui() does not exist then match′

is false. Mnemonic: hash-mark is used for parame-
ter substitution in languages such as TEX, and this
matching operation causes the matching pattern to
take something external (the user-defined predicate)
as a parameter.

In the current version, the functions Ui() are al-
ways defined using the “-f” command-line option (or
its long-named equivalent) and correspond to the
character coverage of TrueType or OpenType fonts.
The predicate returns true if and only if y has a head
consisting of a single Unicode character that is cov-
ered by the font.

Cooked output
The default mode of operation for the idsgrep
command-line utility is that whenever a matching
tree is detected, the exact sequence of bytes that were
parsed to generate that tree (including no skipped
whitespace before it, and all skipped whitespace af-
ter it but before the next tree) will be copied through
to the output. This mode of operation is called
“raw.” Raw mode is easy to understand, efficient,
preserves distinctions like different kinds of brackets
in the input, and is as analogous as reasonably pos-
sible to the operation of grep. However, preserving
the exact input bytes may preserve invalid UTF-8,
valid but weird EIDS syntax, or non-ASCII charac-

ters users may find difficult to type or display, that
may have existed in the input. The “-c” (“--cooking”)
command-line option provides a wide range of ways
for idsgrep to generate new EIDS syntax of its own,
guaranteed to be valid, from the internal represen-
tation generated by the parser. The cooked output
modes force the output into a well-behaved format
independent of what the input looked like. Input
canonicalization (such as the translation from “[lr]”
to “⿰”) can also be controlled through this interface.

The “-c” option can be given a (lowercase ASCII
Latin, unabbreviated) keyword as its argument, to
select a preset output mode. That is the only recom-
mended way to use this option. The available preset
modes are as follows:

raw Raw mode: write out the exact input byte se-
quence that was parsed to generate the matching
tree, even if it is not valid UTF-8. This is the
default.

rawnc Raw with no canonicalization: raw mode out-
put, but without the canonicalization transfor-
mation during input parsing.

ascii ASCII-only: all non-ASCII characters and
ASCII control characters are replaced by escape
sequences or subjected to the reverse of the in-
put canonicalization transformation, to produce
a result that should pass through most limited-
character-set channels. Note that the plainest
ASCII space (U+0020) is not escaped in this
mode when EIDS syntax does not require it to
be. This mode generally uses a lot of hexadeci-
mal escapes and, in a dictionary-lookup context,
may be useful for finding the hexadecimal code
point value of an unknown character.

cooked Generic cooked mode: render trees as reason-
ably clean and appealing Unicode text similar
but not necessarily identical to what appears in
the pregenerated dictionary files. This will es-
cape characters outside the Basic Multicharac-
ter Plane; characters in all Private Use Areas;
and any other characters that EIDS syntax re-
quires must be escaped; but no others. It will
choose an appropriate escaping method depend-
ing on the type of character. Generally, it will
use black lenticular brackets for top-level heads,
ASCII brackets elsewhere, and syntactic sugar
and syrup to avoid brackets where possible (ex-
cept for top-level heads).

24

indent Write trees on multiple lines with two-space
indentation to show their structure as clearly as
possible. One blank line (two newlines) between
trees. In other ways this is similar to “cooked.”

If not given a preset keyword, “-c” can be given�
a string of ASCII decimal digits. The decimal-string
interface allows precise control of how output syntax
will be generated, but it is somewhat experimental,
very complicated, and may change incompatibly in
future versions of this software. Use of this feature
is not recommended. Nonetheless, the remainder of
this section will attempt to document it.

The format specifier may be up to twelve dig-
its long. If it is shorter than that, it is taken as a
prefix with unspecified digits copied from the default
specifier, which is “100000913250” and equivalent to the
“cooked” preset. The two raw presets are handled as
special cases; of the remaining cooked presets, “ascii”
is equivalent to “000000913551” and “indent” is equiva-
lent to “100000223250.”

The first digit specifies the type of brackets to
be used for the head of the root of the tree: 0 for
“<>,” 1 for “【】,” or 2 for “〖〗.” The second digit
specifies the type of brackets for the head of any non-
root node, using the same code.

The third digit specifies the type of brackets for
nullary functors: 0 for “(),” 1 for “（）,” or 2 for
“｟｠.” Similarly, the fourth digit specifies the brack-
ets for unary functors: 0 for “..,” 1 for “::,” or 2
for “・・”; the fifth digit specifies the brackets for bi-
nary functors: 0 for “[],” 1 for “［］,” or 2 for “〚〛”;
and the sixth digit specifies the brackets for ternary
functors: 0 for “{},” 1 for “〔〕,” or 2 for “〘〙”.

The seventh digit describes how to insert newlines
and indentation to pretty-print the tree structure. If
it is 0, that will not be done. Any decimal digit from
1 to 7 specifies the number of spaces per level of in-
dentation. If it is 8, trees will be pretty-printed using
one tab character per level; the number eight is a
mnemonic for the fact that people generally expect
those to be equivalent to eight spaces each. If it is 9,
trees will be wrapped to 76 columns by inserting new-
lines, with three-space indentation of all but the first
line of each tree. The added white space will only be
inserted where it does not change the semantics of the
output, i.e. between and not within bracketed strings.
One consequence is that bracketed strings longer than
one line, such as occur in the EDICT2-derived dictio-
nary, will not be split, but may be moved onto lines
of their own. The right margin of 76 will probably
become an adjustable option in a future version.

The eighth digit specifies the separator printed
between trees: 0 for a null byte (U+0000), 1 for a
newline, 2 for two newlines, or 3 for no separator at
all.

The ninth digit specifies the circumstances under
which the sugary and syrupy features of EIDS syntax
should be used. It is a sum of binary flags: add 4 to
use a syrupy semicolon when possible at the top level;
2 to use a syrupy semicolon when possible at other
levels; and 1 to use sugary implicit brackets wherever
possible.

The tenth digit specifies which characters should
be escaped. Literal backslashes, and (within a brack-
eted string) literal instances of the close-bracket char-
acter that would otherwise end the string, must al-
ways be escaped. When the tenth digit is 0, those
are the only characters that will be escaped. Other
values add escaping for the following categories of
characters, and do so cumulatively with each digit
also escaping everything that would be escaped by
all lesser digits.

1 Escape characters from the astral planes; that
is, characters with code points greater than
U+FFFF and thus outside the Basic Multilin-
gual Plane.

2 Escape characters from the BMP Private Use Ar-
eas, U+E000 to U+F8FF. The other Private Use
Areas are already escaped at level 1 by virtue of
being outside the BMP.

3 Escape all non-ASCII characters (U+0080 and up)
except the core Unified Han range (U+4E00 to
U+9FFF).

4 Escape the core Unified Han range.

5 Escape the ASCII control characters (U+0000 to
U+001F).

6 Escape closing brackets at the start of bracketed
strings, which otherwise escape escaping because
of a special case in the syntax definition.

7 Escape all characters. Depending on the value of
the next digit, however, the ASCII Latin alpha-
bet still might not be escaped.

The eleventh digit specifies how to escape what-
ever characters were selected for escaping by the tenth
digit. The available values are as follows.

25

0 Use a single backslash followed by the literal char-
acter, only. The ASCII Latin alphabet can-
not be escaped in this way and under this op-
tion, or options 1 or 5 which fall through to this
case, will not be escaped at all. Since the literal
characters remain in the text, this option is not
suitable for sending output through any chan-
nel that is not clean for the full range of UTF-8
characters. However, unlike raw mode, this and
all other cooked modes do guarantee to produce
valid UTF-8, not arbitrary byte sequences.

1 Use a backslash-letter sequence for ASCII control
characters U+0001 to U+001B, and otherwise
follow option 0.

2 Use variable-length hexadecimal “\x{}” sequences
for all characters that are selected to escape.
This syntax can escape any character.

3 Use two-digit “\xHH” sequences wherever possi-
ble (that is, for ASCII and ISO-8859-1 char-
acters), four-digit “\XHHHH” sequences for
other characters on the Basic Multilingual Plane,
and variable-length hexadecimal sequences oth-
erwise.

4 Use four-digit “\XHHHH” sequences wherever
possible (that is, for all characters on the BMP),
and variable-length hexadecimal sequences oth-
erwise.

5 Attempt to choose the simplest type of escape
for each character depending on its value, just
like option 3 except with backslash-letter es-
capes where possible (U+0001 to U+001B) and
backslash-literal escapes for ASCII non-control
characters (U+0020 to U+007E excluding the
Latin alphabet). The ASCII Latin alphabet will
not be escaped at all under this option.

The twelfth digit specifies canonicalization pro-
cessing; that is, the translations on both input
and output between alphabetic functor aliases like
“(anything)” and their symbolic equivalents like “(?).”
Note that in all cases the symbolic versions are the
matching operators; if you disable input canonical-
ization and enter a matching pattern of “(anything)”
it will be matched as an ordinary nullary functor
containing a string of eight ASCII letters, not as
the match-anything operator which is always named
“(?).” The digit value is a sum of binary flags: add
4 to disable the default transformation of alphabetic

aliases to symbolic names on input; plus 2 to enable a
translation from alphabetic aliases to symbolic names
on output, which is generally only meaningful if 4 was
selected; plus 1 to enable a transformation from sym-
bolic names back to alphabetic aliases on output. �Character widths and line wrapping
The line wrap feature involves a grossly dispropor-
tionate amount of support code because of wide char-
acters. On a character-cell terminal, a character like
“A,” called “narrow,” takes up one cell of horizontal
space. The line length is assumed to be 80 cells, so we
can print 80 of those characters per line. But there
are other characters like “あ,” called “wide,” that take
up two cells each. Note that these wide characters are
distinct from, although related to, C-language values
of the type wchar_t, which are also sometimes called
wide characters. If we print more than 40 wide char-
acters without a line break, we run off the edge of
the terminal. Moreover, if we are one cell away from
the end of the line, we can’t print a wide character
even though there is some space remaining. Since
IDSgrep’s output usually includes a mixture of wide
and narrow characters, correct line wrapping requires
attention to these issues.

The width of control characters cannot necessarily
be defined (how “wide” is carriage return?), but there
are also things that are not exactly control characters
but seem like they should have widths other than
one or two. For instance, combining characters seem
like they should have zero width; there are multi-em
dashes like U+2E3B which seem like they should have
width greater than two; the variable-length sequence
of code points corresponding to a spelled-out Korean
syllable seems like it should be two cells wide as a
whole, with no meaningful breakdown of which code
points correspond to which fraction of that; there are
issues with bidi (mixing left-to-right and right-to-left
scripts); languages like Thai and Mongolian present
their own problems; and so on. All in all, it probably
just isn’t possible to do correct typewriter-style line
breaking on general Unicode text. IDSgrep nonethe-
less makes the attempt, at least for the kinds of text
expected to occur in its dictionaries.

There is no standardized list of which characters
are wide and which are narrow. Pre-Unicode CJK
character sets had the simple rule that those char-
acters encoded with one byte were narrow, one-cell
characters, and those encoded with two bytes were
wide, two-cell characters. The “wide Latin” and “nar-
row katakana” character ranges originate in that dis-

26

tinction. But IDSgrep does everything in Unicode.
Unicode provides, in a “Standard Annex” [13],

some default rules for deciding whether a code point
should be treated as narrow or wide. There is a
field in the Unicode character database specifying the
treatment of each character. Unfortunately, that field
does not just say “wide” or “narrow”; Unicode allows
six different values for it including “neutral” and “am-
biguous,” and the treatment for those is explicitly left
to application developers to decide according to con-
text.

POSIX provides a library function called
wcwidth(3), which is supposed to answer the ques-
tion of how many columns wide a character might
be. However, it has some problems for use with IDS-
grep. It takes a wchar_t as its argument, not necessar-
ily a Unicode code point. So IDSgrep would have to
convert its internal representation (which is always
UTF-8) into whatever wchar_t might be on the par-
ticular platform, making portability that much more
difficult. A wchar_t is usually a Unicode code point
on modern installations, but there is no promise of
that, and it is a recipe for headaches. It would also
introduce an undesired, though maybe necessary, de-
pendence of IDSgrep’s behaviour on the local host’s
i18n configuration. The idea of converting to Shift-
JIS and then counting the bytes has similar issues.

On my own installation, wcwidth(3) would not even
produce correct results. It seems to follow the Uni-
code rules with decisions on the unspecified points
that are not appropriate for IDSgrep. For instance,
my installation’s wcwidth(3) claims that some but not
all enclosed characters, like ①②③, are one-cell char-
acters, because Unicode classes them as Ambiguous,
treated as narrow by default, because both CJK and
non-CJK character sets have historically included
things that are now mapped to those code points.
But in IDSgrep output they should definitely be
counted as two-cell characters, because they would
almost certainly derive from CJK sources and the
relevant fonts make them the same size as Han char-
acters.

IDSgrep’s solution to these issues is messy, and
quite possibly will be ripped out and replaced with
something else in the future, but it at least produces
reasonable results on my own installation, and since
the consequences are mostly cosmetic anyway, I con-
sider it good enough for the moment.

The file widthtab.c, distributed as part of the IDS-
grep package, contains the knowledge of which char-
acters are narrow or wide (or zero-width). Most of

this file is the transition table of two finite state
automata that make the decision by examining the
UTF-8 representation of the character (not its code
point). The automata are encoded in a complicated
way intended to be efficient in both time and space:
each state specifies the index of a bit in the UTF-8
representation, and then the three bits starting from
that point are used to choose from among eight tran-
sitions, which could consist of accepting, rejecting, or
going to another state to look at more bits. The two
automata share the same state table, with two differ-
ent starting states; some of the states are allowed to
overlap between the two. BDD hackers will note that
this is, more or less, a “reduced ordered octal decision
diagram,” something like a BDD with three layers of
bit tests collapsed into a choice of eight paths§ at each
level. As long as there is no need to change the width
mapping, this file can safely be treated as a black box.

However, it is not practical for a human being
to edit the transition tables directly. Instead, the
file mkwcw.c contains a meta-program for generating
widthtab.c. This file is distributed with IDSgrep but
is not built and used by default. You should only use
it if you wish to update widthtab.c for a new version
of the Unicode database or to reflect different prefer-
ences about how to override the default and unspec-
ified width definitions from the Unicode database.

To build and run mkwcw and re-generate widthtab.c,
use the --enable-widthtab configuration option when
building IDSgrep. This will require the BuDDy li-
brary for BDD processing, even though BuDDy is
not required to compile and run the code that mkwcw
generates. It will also require current versions of
the EastAsianWidth.txt and UnicodeData.txt files from
the Unicode Character Database. The file widths.txt,
which ships with IDSgrep, contains width informa-
tion that will override what is in EastAsianWidth.txt;
any code points mentioned here will have the widths
specified in widths.txt instead of the widths specified
in EastAsianWidth.txt. It is written in the same format
as EastAsianWidth.txt.

See the comments in mkwcw.c for further details on
its use.

§八正道

27

Bit vector indices
Executive summary: if you leave it on the default

settings and skip this chapter, it should just work.
In more detail: matching trees according to the

rules in the previous chapter is potentially an expen-
sive operation. The cases of tree-matching actually
used in practice tend to be relatively easy ones, but
parsing EIDS syntax is also expensive enough, even
with an optimized implementation, that it may take
as much time as matching or more; and every tree of
the database must be parsed in order to attempt a
match. A complete installation of IDSgrep may take
a second or two on a typical PC to parse and search
all the dictionaries, which is not long enough to be a
problem in typical interactive use, but could become
an issue if queries were being generated automati-
cally, faster than a single user would type them.

The solution is to avoid doing tree matches, and
avoid doing parsing, as much as possible. As of ver-
sion 0.4, IDSgrep is capable of analysing a dictionary
in advance and generating an index file representing
useful information about the trees in a format that
can be scanned quickly. It is not possible to cor-
rectly answer all queries solely from information in
the index, but the hope is that for most queries, the
program can rule out most dictionary entries as po-
tential matches just from a fast examination of the in-
dex. Then for any entries not excluded by the index,
it runs the more expensive parsing and tree match-
ing operations on the actual data. The time saved by
skipping input entries is supposed to more than com-
pensate for the additional work of reading the index.

Exactly how this feature works is complicated,
and is part of the author’s academic research. This
chapter starts with a short summary from a user’s
perspective of how to build and use bit vector indices.
After that, all remaining sections are marked with
dangerous bend symbols, and attempt to give some
notes on the technical details for interested parties
without claiming to really be a complete presenta-
tion of the mathematical underpinnings of the sys-
tem. Those sections should not be read by anyone
who is easily frightened. Watch for future publica-
tions covering this material more formally.

Building and using bit vector indices
If you run make install to install dictionaries, then the
build system should build, install, and use bit vector
indices for the installed dictionaries automatically.

Getting the most out of bit vector indexing re-
quires building the idsgrep command-line utility with
the BuDDy binary decision diagrams library available
at http://sourceforge.net/projects/buddy/ [12]. With-
out it, bit vectors will still provide some speed im-
provement, but not as much.

Bit vector indices properly used are expected to
increase the speed of searching by about a factor of
15 in typical cases. The improvement factor varies a
lot depending on a number of issues, and could be a
thousand or more under optimal conditions. It should
never be significantly less than one; that is, searching
with a bit vector index should never take significantly
longer than searching without one.

Bit vectors provide the greatest benefit when the
query is simple (exact-matching a single syrupy char-
acter is best); when the dictionary entries themselves
are small; when the query, regardless of its form, only
matches a small number of results; when the query
includes exact matching of heads or functors at the
root level of the EIDS tree (such as a query starting
with “[lr]”) or in the root’s immediate children; and
when the query does not include special matching op-
erators such as regular expressions and user-defined
predicates.

Whenever the idsgrep utility reads a file whose
pathname ends in “.eids”—regardless of whether that
file was specified explicitly on the command line or
indirectly via the -d option—it will look for an in-
dex file whose pathname is the same except with the
.eids extension changed to .bvec. If such a file exists,
can be read, has the correct 8-byte magic number
at the start, and has a timestamp no older than the
timestamp of the .eids file, then idsgrep will assume
it is a bit vector index and use it to speed up the
query process. Note that all those conditions must
be met. If any of the conditions fail to be met, no
error will be reported, but the scanner will be forced
to read and parse the entire input file without using

28

bit vector filtering. Once the idsgrep utility commits
to start reading the index file past the header, it can-
not switch to index-free searching and errors after
that point will abort the search, just like errors in
the EIDS input file.

To create a bit vector index, use the -G op-
tion to idsgrep, as in idsgrep -G dictionary.eids >
dictionary.bvec. Something like this will be necessary
if the dictionary file changes or if you create a new
one of your own. An outdated index file will usu-
ally be locked out by the timestamp check, but if you
force the issue (for instance, by changing the times-
tamps with touch), the search will most likely abort
with a parsing error when it hits the changed part of
the dictionary file.

Bit vector indices are only usable when reading
from files with names ending in .eids. When reading
from standard input or similar, or even just from files
without *.eids filenames, bit vectors will not be used.
Bit vectors are also not applicable to the internally-
generated Unicode list associated with the -U option,
although a somewhat similar feature (generating only
the at most one entry that could match, if the query
tree has a head) is always used where it applies. If
you direct the idsgrep utility to read from multiple
input sources in the same run, it will use bit vector
indices on whichever input sources it can, even if that
is not all of them.

You can force idsgrep to ignore bit vector indices
with the -I option; that is unlikely to be useful ex-
cept during speed tests, but one could maybe imagine
a case where it’s absolutely necessary to have a file
named *.bvec which is not a bit vector index and must
not be touched, or where even looking for the index
file incurs undesired traffic on a network filesystem.

Using a (valid) bit vector index, or not using one,
should only affect speed. It should never change
which results are or are not returned from a query. If
you manage to find a case where the same query and
the same input file produce different hits depending
on whether -I is used or a bit vector index gener-
ated by the same idsgrep binary, then that may be
evidence of a bug; please report it.� Filtered matching
Let E be the set of EIDS trees. Let T and F rep-
resent Boolean true and false. The previous chapter
defined a function match : E × E → {T,F} for de-
termining whether one EIDS tree matches another; if
match(N,H) = T we say that N , which we call the
needle, matches H, which we call the haystack.

The idsgrep binary has the job of evaluating
match(N,H) for one N specified on the command
line and every H in the dictionary. The dictionary is
large, but does not change frequently, whereas each
invocation of idsgrep faces only one value of N , but
it is fresh and may never have been seen before. And
the match function is inconveniently expensive to cal-
culate.

We will attempt to deal with this situation by
defining three new functions filt : E → F, vec : E →
V, and check : F × V → {T,F}. Elements of V that
come out of vec are called vectors and elements of F
that come out of filt are called filters. We want the
following properties:

• vec might be expensive to compute, but we
can store elements of V (its output) reasonably
cheaply.

• filt might be relatively expensive to compute,
and its output might be large, but we can at
least afford to compute it, and store the result,
once per run of idsgrep.

• check is cheap to compute.

• If match(N,H) is true, then check(filt(N),
vec(H)) is definitely true. Therefore if
check(filt(N), vec(H)) is false then match(N,H)
must also be false.

• If match(N,H) is false, then check(filt(N),
vec(H)) is usually false. This might not be guar-
anteed, but we want it to hold as often as possi-
ble.

With those properties, what we can do is run vec
on all the trees in the dictionary and store the re-
sults in the index ahead of time. When the idsgrep
binary runs, it can run filt just once on the input
search pattern. Then for each entry in the index, it
calculates check(filt(N), vec(H)). That is supposed
to be a cheap operation. If check returns true, then
the dictionary entry might possibly be a match. At
that point idsgrep can extract the location and length
of the original tree data from the index, read the rel-
evant chunk of the dictionary proper, parse it, and
calculate match to determine whether it really is a
match. We hope that when the dictionary entry is
not really a match, check will usually return false.
Whenever check is false, we can be sure that match
would also return false, and so idsgrep can skip over
that entry without doing the work of parsing or ac-
tually computing match the hard way.

29

This idea of doing an easy approximate check
first, to save the cost of a more difficult accurate
evaluation, should be quite familiar. Imagine a hir-
ing committee quickly throwing out all the job ap-
plications from software engineers, then interviewing
the computational linguists. Similar concepts appear
throughout computer science: consider instruction
and data caches; memoization for dynamic program-
ming; solving relaxed versions of optimization prob-
lems; and especially Bloom filters [4]. The bit vector
technique used in IDSgrep builds on Bloom filters and
on the work of Skala and others [19] and Skala and
Penn [20] on unification of types in logic program-
ming systems.

Functional programming weenies will note that
the real point of an element of F is that you can com-
bine it with check to make a tasty curry: elements of
F are important because of the functions E → {T,F}
they beget upon check. When the needle is a com-
plicated EIDS tree with a lot of special matching op-
erators in it, we hope that we can find filters for the
subtrees and then combine them in some simple way
to find a filter for the complicated needle. This pur-
suit is called the filter calculus. It is always possible,
at least a little, because we could just declare the
result of the filter calculus to be a filter that makes
check return T identically on all vectors. That obeys
all the properties it must obey. But of course we hope
for filters to be as restrictive as possible, to allow us
to rule out as many dictionary entries as possible, so
the accept-everything filter is a last resort.

IDSgrep (when compiled with the necessary li-
brary) actually uses two layers of filtered matching,
here called lambda filters and BDD filters. Both lay-
ers share the same vectors—that is, V and vec are
the same for both. For each entry in the index, the
idsgrep utility checks the lambda filter. If the lambda
filter returns false, it stops. If the lambda filter re-
turns true, it tries the BDD filter, and if that returns
false, it stops. Only if both filters return true will it
try parsing the tree and really calculating the match
function. The filters are arranged in order of increas-
ing cost: the lambda filter is expected to run faster
than the BDD filter, which is expected to run much
faster than the parse and tree test.

In IDSgrep 0.4, V is the space of 128-bit binary
vectors. Each vector is conceptually divided into four
32-bit words; the actual implementation, intended for
a 64-bit microcomputer, involves a two-element array
of uint_64 integers.

Vector values are calculated by the vec func-

tion (called haystack_bits_fn in its implementation in
bitvec.c) as follows. The first (least significant) 32
bits of the vector are a Bloom filter encoding the
head, and the functor and arity combined, of the root
of the EIDS tree. Depending on a hash of the head,
three of the bits are set to ones. They are chosen
without replacement (unlike the bits in the classic
Bloom filter) so it really is three distinct bits set to
one—no collisions at this level. If there is no head, a
special combination of three bits is set, corresponding
to the hash of an empty string. Similarly, three bits
are set depending on the functor and arity; these can
collide with the head bits but not with each other.
So among the first 32 bits of the vector, somewhere
between three and six bits will be set in a pattern
that depends on the head, functor, and arity of the
root of the tree. This is a little less than the op-
timal density for a Bloom filter this size considered
in isolation (from information theory: one wants the
filter to end up with approximately equal numbers
of ones and zeros), but because of the more compli-
cated things happening elsewhere in the system, the
reduced density here seems to work better.

The second 32-bit word encodes the head, func-
tor, and arity of the first child of the root, using the
same scheme. This is left zero for a nullary root. The
third 32-bit word similarly encodes the last (not nec-
essarily second) child of the root. When the root is
unary, that means the only child gets encoded into
both the second and third words of the overall vector.
Finally, the middle child of a ternary root, and all
grandchildren and lower descendants of any root, are
all encoded into the fourth 32-bit word, all bitwise
ORed on top of one another. Generate a bit vector
index with debugging turned on, redirecting standard
error to a file, to see what these vectors actually look
like. �Lambda filters
Consider a very simple needle that matches if and
only if the head of the haystack has a certain value.
For instance, <foo>!?. That matches anything with
the head “foo” under the head-to-head matching rule,
and nothing else because !? (the inverse of the match-
everything query) matches nothing. This is not typ-
ical of the queries users actually write, but we will
build up to the more complicated behaviour of real-
istic queries.

Given the bit vector for a haystack tree, we could
look at just the three bits in the first 32-bit word
that (according to the hash function) correspond to

30

“head equal to foo.” If the head of the haystack is
foo, then those bits will definitely all be ones. Other-
wise, we expect them to behave like three bits chosen
from a 32-bit word in which at most six bits cho-
sen at random have been set, and the chances of all
three randomly being ones under those circumstances
is roughly (6/32)3 ≈ 0.7%. (Not exactly, because of
collisions and stuff, but that’s a fair estimate.) So a
decent thing for check to do, given this query, would
be “look at the three bits associated with the head
foo, and return T if more than two (i.e., all three)
of them are set, F otherwise.” That would have the
desired properties of returning T for sure when the
query matches, and not being very likely to return T
under other circumstances.

Let F be the set of ordered pairs (m,λ) where m
is a 128-bit bit vector called the mask and λ is a non-
negative integer called the threshold. We call these
pairs lambda filters. Define check((m,λ), v) to com-
pute the bitwise AND of the mask m and vector v,
count how many bits are set in the result, and then
return T if and only if the count is strictly more* than
the threshold λ. The filter for <foo>!? will consist of a
mask that selects the three bits for foo, and a thresh-
old of 2. It matches if and only if those three bits
are all set, which is definitely true for haystacks that
match the needle and reasonably unlikely to be true
for haystacks that do not match the needle. So far
this is just the usual lookup algorithm for a Bloom fil-
ter. But by choosing different masks and thresholds,
we can also do other kinds of filtering.

Suppose we have two filters (m1, λ1) and (m2, λ2).
Let m3 be the bitwise OR of m1 and m2, and let λ3 be
the minimum of λ1 and λ2. If a given vector contains
more than λ1 bits selected by m1, then all those bits
are also in m3, so (m3, λ3) will also match. The same
is true for (m2, λ2); so if either of the original filters
matched, then the combined filter must match. In
this way we can find a filter for the OR of two existing
filters.

Note that the OR filter is not an if and only if:
there could be combinations of bits that hit part of
m1 and part of m2, so that neither (m1, λ1) nor
(m2, λ2) would match but (m3, λ3) matches. We
have lost some precision in the filter calculus, and
if we kept ORing filters like this we would eventually
end up with a saturated mask that matches every-
thing. But we have not lost any recall. If λ1 ̸= λ2,

*This definition may seem to be off by one from the most
intuitive way to do it, but λ is defined this way for consistency
with related work in the combinatorial design theory literature.

we can improve things a little by removing bits from
whichever filter has the greater λ until the two thresh-
olds become equal; that slows down the saturation a
little in some cases.

Combining filters with AND is more complicated
because there are multiple choices for the result.
Given that there are more than λ1 bits set out of
m1, and more than λ2 bits set out of m2, we can con-
clude various things about the number of bits that
must be set in the intersection and each set differ-
ence of the two masks. For instance, knowing more
than two bits out of four are set, and more than two
bits out of a different set of four that overlaps in two
places with the first set, we can conclude that more
than zero bits of the two-bit intersection must be set;
or more than three of the six-bit union. Both those,
and several others, would be acceptable results for
the AND operation in the filter calculus. IDSgrep at-
tempts, heuristically, to guess which of these filters
will be most useful and return the best one as the
result of ANDing two lambda filters.

When we push a subtree further down in the EIDS
tree, its filter changes. Suppose we have a filter that
would be correct for a given needle if it were the root,
but it actually appears as the right child of a binary
root. Any bits in its mask that would have queried
the first word (head, functor, and arity of root) must
now query the third word (head, functor, and arity of
last child). We can easily rearrange those bits in the
mask. However, if the mask selects any bits from the
second through fourth words when the needle is at the
root, then when it is shifted down the tree all those
bits must come from the last word of the haystack’s
vector. They could collide with each other. Then a
haystack that formerly would have been hit by the
mask in three places might only be hit once, because
all three of those bits collided. The value of λ might
need to be reduced by as much as a factor of three.
IDSgrep computes all possible collisions and tries to
use as large a value of λ for the modified filter as it can
prove will still give correct results. Similar consider-
ations apply to the operations of moving a needle’s
filter from the root to the left or middle children.

Given these operations of OR, AND, and moving
a needle that refers to the root to refer to a child
instead, IDSgrep can find a lambda filter for basic
matching of any tree. The rules like “if there is a
head, then it must match exactly, and if not, then the
functor, arity, and all children must match” translate
into filter calculus operations and can be applied re-
cursively.

31

Special matching operators require additional
handling. The & (Boolean AND) and | (Boolean OR)
operators are easy. The ! (Boolean NOT) operator
unfortunately isn’t: all we can say in pure filter cal-
culus is that any filter might correspond to a match
that might fail later, so the NOT of any filter has
to be the match-everything filter. The IDSgrep im-
plementation of NOT goes slightly beyond pure filter
calculus by looking at the actual needle instead of
only the needle’s recursively-computed filter; so it is
smart enough to recognize !! as a no-op, !? as match-
nothing, and to apply de Morgan’s laws to AND and
OR. The unordered match operator * translates eas-
ily into the OR of all permutations of its child, and
the literal match operator = is straightforward. Other
match operators, such as regular expression, have se-
mantics too complicated to easily handle, so the filter
calculus just returns the match-everything filter for
them.

Most of the output from --bitvec-debug consists of
an indented trace of the lambda filter calculus oper-
ations performed while analysing the user’s query.� BDD filters
Lambda filters do not capture everything we might
want to know about the bits in a vector. Consider the
filters (with vector length limited to four) (0011, 1)
and (1100, 1). The OR of those filters in the lambda
filter calculus will be (1111, 1). But that will match
if any two bits are set; the original filter would only
match if the first two or the last two are set. We have
lost some precision, which translates to eventually do-
ing more tree matches than necessary, in exchange for
the guarantee that the result of ORing two lambda
filters will always be a lambda filter. BDD filters at-
tempt to lose less precision by allowing the results of
filter calculus operations to be more complicated. In
exchange for this greater power, a lot of data struc-
tures have to be maintained in the background, and
that is why we apply lambda filters first: lambda fil-
ter misses allow us to skip the greater work of testing
the BDD filters, and BDD filter misses allow us to
skip the even greater work of parsing and doing real
tree matching.

A Binary Decision Diagram (BDD) is basically
the most boring “Choose Your Own Adventure” ever.
Every page just says “If binary variable such-and-
such is true, then go to this other page; otherwise,
go to that other page.” Many of these options collide
with each other, so that even though there may be
trillions of paths through the BDD there are only two

endings, neither of which involves Gorga the Space
Monster. Spoiler: the two endings are “1” and “0.”

More mathematically, a BDD is a data structure
that represents a function that takes some bits as
input and returns one bit of output. It can represent
any binary function if you’re willing to give it enough
time and memory, and it is relatively easy to perform
logic operations on functions represented as BDDs.
Donald E. Knuth is a great fan of BDDs.

Let F be the set of BDDs on 128 variables. Define
check(filt(N), vec(H)) to simply evaluate the BDD
filt(N) on the 128 bits of vec(H). The vector vec(H)
is as defined previously; it remains to define filt(N).

For the query <foo>!?, which matches if and only
if the head is foo, recall that there are three bits in
the first word of the vector that will necessarily all be
set by matching haystacks, and only rarely all set by
non-matching haystacks. We can easily create a BDD
that returns 1 if and only if all three of those bits are
set. So far this is just the same as the corresponding
lambda filter.

The difference is in the BDD filter calculus oper-
ations. We can take the OR of any two BDDs and
the result will be a BDD that returns 1 if and only if
at least one of the inputs would return 1. The equiv-
alent operation on lambda filters would only be an if,
not an if and only if; but with BDD filters there is
no loss of precision in OR. Similarly, we can do AND
without loss. Those two operations alone account for
much of the filter calculus done in practice, and BDDs
represent these functions exactly. The only loss of
precision is in the original Bloom filter encoding.

Once we start shifting needles from the root to
the children, more precision is lost because of bit col-
lisions, just as with lambda filters. The BDD may
be looking for two bits that both ended up in the
same place, so if that one bit is set then the BDD
sees both its inputs true even though really, with-
out the collision, only one would be true. The NOT
operation remains a problem too: in any pure filter
calculus where the result of NOT depends only on
the filter that was the input to NOT, because filters
can really only return “maybe” and not exactly “yes,”
the result of NOT must always be identically true re-
gardless of the input. Just as with lambda filters,
IDSgrep looks at the needle itself, not purely at the
filter, to get better results from NOT. More compli-
cated operations, like match-anywhere, have reason-
ably straightforward implementations. �

32

Memoization in the tree match
This feature does not involve bit vectors at all, but
is described in the bit vector chapter because, like
bit vectors, it is a speed enhancement that doesn’t
change the basic matching algorithm. There is no
“r” in “memoization.” That word is a shibboleth† for
CS theorists.

For the most part, when a match is not ruled out
by the bit vector indices, IDSgrep uses a straightfor-
ward recursive-descent algorithm to implement the
tree matching function match. That works well in
practice for the kinds of queries typically encoun-
tered. However, it is possible to construct patho-
logical queries on which the recursive matching al-
gorithm will misbehave. For instance, a query with
many nested instances of .anywhere. can bog down
attempting to match against a deep tree, as it tries
all possibilities for the intermediate nodes that an-
chor the different .anywhere. operators, even though
the choices are all equivalent. Matching according
to IDSgrep’s matching rules should in fact be possi-
ble in polynomial time, because we can match each
node in the needle tree once against each node in the
haystack tree. Assuming the match function is well-
defined we only need do that once per pair of nodes;
so this suggests a dynamic programming algorithm.
The dynamic programming algorithm is unlikely to
be a good idea in the usual case, because of excessive
overhead maintaining the table and the possibility of
doing extra, unnecessary matches if we’re not careful.
Recursive descent, with short-circuiting of unneces-
sary subtree tests once the answer is known, seems to
perform much better in practice in ordinary cases de-
spite its exponential worst-case bound. Nonetheless,
to cover bad cases that may occur in the input, IDS-
grep implements memoization of tree matches when
it appears likely to be helpful.

The matching operators that could cause trouble
are “...” (.anywhere.) and “.*.” (.unord.). All other
special matching operators, and the default match-
ing rules, recurse at most once into each child; but
match-anywhere attempts to match its needle tree
once against every descendant of its haystack tree,
and unordered match attempts to match its needle
once against each of the up to six permutations of
its haystack’s children. The time to do matching by
recursive descent ends up having an exponent deter-
mined by the number of uses of those operators in
the matching pattern.

†Judges 12:6.

So IDSgrep counts how many times either of those
operators occurs in the matching pattern, and uses
that count to determine both whether memoization
would help, and how big a table size to use. The
memoized match is straightforward. Before testing a
needle tree against a haystack tree, IDSgrep checks
whether that pair of needle and haystack is recorded
in the memoization hash table. If it is, the answer
is taken from the table instead of calculated fresh.
Otherwise, once it has been calculated, the result goes
in the table. �Implementation details
Storing bit vectors requires storing two uint64_ts and
an off_t, with possible alignment padding, per en-
try. That works out to 24 bytes on typical newer
64-bit and 32-bit platforms. Some older 32-bit plat-
forms with 32-bit off_ts may only require 20 bytes per
index entry, trading off the decreased space against
likely problems should a dictionary ever grow larger
than 4G. For comparison, the average length of a dic-
tionary entry in the CHISE, KanjiVG, and Tsukuri-
mashou dictionaries as of this writing is about 40
bytes; four times that for EDICT2. So storing the
indices represents a significant, but not crippling, in-
crease in storage requirements. The performance im-
provement numbers do account for the time taken
to read the additional data from disk—it just isn’t
enough to be a problem compared to the savings in
parsing and tree matching.

The format of the bit vector index file is specific to
the version of IDSgrep and the computer architecture
including the C compiler. If you use a bit vector
file with a mismatched idsgrep binary, it will almost
certainly be detected as invalid and ignored. Building
with or without BuDDy will not make a difference
to the file format; the difference is a different search
algorithm applied to the same data.

It is possible that the magic numbers may not
perfectly track incompatible changes among differ-
ent development versions of IDSgrep that you might
check out of SVN, but they should definitely work
correctly to differentiate between incompatible ver-
sions that have been formally released.

One issue for BDD filters that did not occur with
lambda filters is that there is no practical limit to the
size of a BDD on 128 bits, so it could grow until it
exhausts memory or consumes so much time for filter
calculus operations that it ends up giving no benefit
over just using the match-everything filter and falling
back on the original tree-matching algorithm. In or-

33

der to prevent this kind of failure, bearing in mind
that it is always safe to change a filter to return hits
on more vectors as long as it doesn’t lose any existing
hits, IDSgrep keeps an eye on the size of the BDDs
returned by filter calculus operations. If a BDD ex-
ceeds 1000 nodes, then IDSgrep applies existential
quantification to shrink it.

For a chosen variable, existential quantification
changes the BDD to one that will return true if and
only if there exists any value of the chosen variable
that would (given the values of the other variables)
allow the result of the BDD to be true. A roughly
equivalent operation on a lambda filter might be to
remove a bit from the mask and subtract one from
λ, necessarily making the filter looser. It may not be
obvious that doing this will necessarily make a BDD
simpler, but after we apply such a quantifier, no more
nodes referring to the chosen variable can remain in
the BDD. The number of variables supporting the
BDD necessarily decreases. Do it to every variable
and the BDD must end up identically true (unless it
was identically false to begin with, in which case it
remains so). So by existentially quantifying variables
in turn, we can guarantee that the BDD will at some
point become smaller than 1000 nodes.

The threshold of 1000 was chosen by educated
guess and by running some test suite queries (those
from test/speed and test/kvg-grone) to see the effect
on the overall running time of using different thresh-
olds. For the typically small queries in test/speed,
the final BDDs end up with an average of 47 nodes
each; increasing the threshold provides steady speed
improvement from about 10 to 100, and has little or
no effect on test/speed after that. The single query
in test/kvg-grone can potentially generate a very large
BDD (at least 70000 nodes), but for that query hav-
ing the BDD doesn’t help much anyway. A thresh-
old of 1000 nodes is the point at which the overhead
of creating the BDD for test/kvg-grone starts to be-
come significant (10% slower overall than the small-
est thesholds, where the BDD is forced to triviality
in negligible time). So this seems a good compro-
mise point. It provides performance about as good as
any other tested value for the queries from test/speed,
which are expected to be typical of actual use; it pro-
vides some headroom (a factor of 10) over the mini-
mum sufficient for those queries; and it is still small
enough to prevent pathological or malicious queries,
like the one in test/kvg-grone, from slowing the system
down significantly.

As BDDs in BDD-using applications go, these are

quite small ones. It appears that that is because the
functions IDSgrep computes with BDDs are mono-
tonic functions, which seem to create very good cases
for the data structure. It also means that the BuDDy
library’s lack of negated edges is no problem. A brief
attempt to tighten the filters by making the functions
non-monotonic had to be aborted; it caused the time
and space spent on filter calculus to blow up expo-
nentially, even with careful attention to the variable
ordering, in exchange for only very small improve-
ments in the precision of the filters. Better to spend
the time doing a few more tree matches. It also ap-
pears that I was lucky with my choice of variable or-
dering. The default ordering that resulted from using
the bits in the vector straight through from LSB to
MSB happens to give good BDDs (as long as they are
monotonic). That means it’s unnecessary to put a lot
of effort into automatic reordering of the variables to
optimize the BDD calculations.

The particular case of many .anywhere. operators
nested inside one another with no heads and no other
nodes in between might be detected and automati-
cally simplified. Any number of those will match the
same set of trees as a single such operator, so the
extras can be simply removed without affecting the
semantics. But it is easy to construct more elabo-
rate queries that still take exponential time without
memoization and that the system cannot reasonably
simplify. Users are unlikely to do that by accident,
but now that I’ve mentioned the possibility, someone
will try.

Let k represent the number of .anywhere. and
.unord. operators in the matching pattern. It is actu-
ally determined by looking at the reference counts for
the strings consisting of a single ASCII period and a
single ASCII asterisk in an internal string table, so
there may be an overcount if those strings happen to
occur as heads or as non-unary functors. If k is less
than three, memoization is not expected to be help-
ful, and so is not done. Then assuming k was at least
three, if it is less than ten it is set to ten and if it is
greater than 22 it is set to 22, and then memoization
will be done with a hash table of 2k+1 entries. The
idea here is to make the hash table grow as the num-
ber of entries needed grows, but always at least 2048
entries because there is little benefit from making it
very small, and never more than 8M entries because
if very large, memory becomes a bigger problem than
time. The constants here were chosen by informal ex-
periment, to switch over to memoized matching at the
level of query complexity where it starts to be useful,

34

and keep the tables just large enough that making
them significantly larger provides little benefit.

Collisions are resolved by just overwriting the old
entries; and the table gets emptied on each new top-
level tree match. Table entries have generation num-
bers, so the emptying is done in constant time by
incrementing the generation instead of really rewrit-
ing the table.

The keys used for the hash table are the actual
pointers. Thus, it is possible for the performance
of this feature to be nondeterministic on some plat-
forms. There are some additional wrinkles in the code
because of the life cycle of pointers to tree nodes: the
nodes created during parsing of input live at least as
long as hash table generations, but there can be a few
nodes created and deleted on the fly during matching,
and those cannot be saved in the hash table lest the
pointers be reused and invalidated. It happens that
the parser already set a flag in each node it created,
for its own internal purposes in determining when the
node was ready to come off the parsing stack. Nodes
created on the fly during matching lack that flag. So
the tree match memoization looks for the parser’s flag
to determine which nodes it is allowed to cache.

The format of the statistics line generated by the
--statistics option is space-separated fields; the first
is “STATS” and then the rest are mostly decimal num-
bers, in this order:

• bit vector (lambda filter) checks;

• lambda filter hits;

• BDD hits (necessarily zero if BDDs not compiled
in; the number of BDD checks when BDDs are
used is always exactly the value of the previous
field and thus not reported separately);

• tree checks (may be greater than bit vector hits,
because of unindexed input which skips directly
to the tree checking step);

• tree hits (these result in output of matched
trees);

• memoization checks (may be much larger than
number of tree checks, because memoization
happens inside the recursion of the tree check,
but only on sufficiently complicated needles);

• memoization hits;

• user CPU time (reported as seconds with a deci-
mal fraction down to microsecond precision as

in the struct rusage, but your operating sys-
tem probably rounds these numbers to 1/100 or
1/1000 of a second);

• node count in the BDD (zero if none was used
or the feature is absent); and

• the query tree, in cooked EIDS format.

35

Bibliography
[1] CHISE project. Online http://www.chise.org/.

[2] GlyphWiki. Online http://en.glyphwiki.org/wiki/
GlyphWiki:MainPage.

[3] Ulrich Apel. KanjiVG. Online http://kanjivg.
tagaini.net/.

[4] Burton H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Communications
of the ACM, 13(7):422–426, July 1970.

[5] Jim Breen. The EDICT dictionary file. Online
http://www.csse.monash.edu.au/~jwb/edict.html.

[6] Jim Breen. WWWJDIC: Online Japanese Dic-
tionary Service. Online http://www.csse.monash.
edu.au/~jwb/cgi-bin/wwwjdic.cgi.

[7] Alexandre Duret-Lutz. Using GNU Auto-
tools. Online http://www.lrde.epita.fr/~adl/dl/
autotools.pdf.

[8] Free Software Foundation. GNU Grep 2.9. On-
line http://www.gnu.org/software/grep/manual/grep.
html.

[9] Philip Hazel. Pcre—Perl compatible regular ex-
pressions. Online http://www.pcre.org/.

[10] Jason Katz-Brown. The Kiten Handbook, revi-
sion 1.2. Online http://docs.kde.org/development/
en/kdeedu/kiten/index.html.

[11] Taichi Kawabata. IDS data for CJK Uni-
fied Ideographs. Online https://github.com/cjkvi/
cjkvi-ids.

[12] Jørn Lind-Nielsen. BuDDy: A BDD pack-
age. Online http://buddy.sourceforge.net/manual/
main.html.

[13] Ken Lunde 小林�. East Asian width. Standard
Annex 11, The Unicode Consortium, Mountain
View, USA, 2013. Online http://www.unicode.org/
reports/tr11/.

[14] 守岡知彦 [Morioka Tomohiko]. UTF-2000 プロジェ
クト [The UTF-2000 Project]. 漢字と情報 [Kanji
and Information], (2):4–6, March 2001. In
Japanese. Online http://www.kanji.zinbun.kyoto-u.
ac.jp/publications/kanji-and-info-2.pdf.

[15] Jon Postel. Transmission Control Protocol. RFC
793 (Standard), September 1981. Online http:
//www.ietf.org/rfc/rfc793.txt.

[16] Julian Seward and Nicholas Nethercote. Us-
ing Valgrind to detect undefined value errors
with bit-precision. In USENIX Annual Tech-
nical Conference, General Track, pages 17–30.
USENIX, 2005.

[17] Matthew Skala. Tsukurimashou Font Fam-
ily and IDSgrep. Online http://tsukurimashou.
sourceforge.jp/.

[18] Matthew Skala. Tsukurimashou Github
repository. Online http://github.com/mskala/
Tsukurimashou.

[19] Matthew Skala, Victoria Krakovna, János
Kramár, and Gerald Penn. A generalized-zero-
preserving method for compact encoding of con-
cept lattices. In 48th Annual Meeting of the As-
sociation for Computational Linguistics (ACL
2010), Uppsala, Sweden, July 11–16, 2010,
pages 1512–1521. Association for Computational
Linguistics, 2010.

[20] Matthew Skala and Gerald Penn. Approximate
bit vectors for fast unification. In The Mathe-
matics of Language: 12th Biennial Conference
(MOL 12), Nara, Japan, September 6–8, 2011,
volume 6878 of Lecture Notes in Artificial Intel-
ligence, pages 158–173. Springer, 2011.

[21] Unicode Consortium. Ideographic description
characters. In The Unicode Standard, Version
6.0.0, section 12.2. The Unicode Consortium,
Mountain View, USA, 2011. Online http://www.
unicode.org/versions/Unicode6.0.0/ch12.pdf.

36

[22] Ben Wing et al. XEmacs: The next generation
of Emacs. Online http://www.xemacs.org/.

37

