
DPWS CORE VERSION 2.1

USER GUIDE

VERSION 1.0 – APRIL 14, 2009

DPWS Core 2.1 User Guide Page 2

DOCUMENT HISTORY

Version Date Editors Comments

0.9 31/03/2009 A. Mensch
S. Rouges

Initial version covering all the
features of DPWS Core version 2.1.0

1.0 14/04/2009 A. Mensch Addition of reviewers feedback

DPWS Core 2.1 User Guide Page 3

TABLE OF CONTENTS

Introduction 7

The DPWS Core toolkit 7

The Devices Profile for Web Services 7

Document guide 9

Definitions and notations 10

namespaces and prefixes in use 10

Style conventions 10

References 10

DPWS Core development principles 12

Web Services and DPWS principles 12

The SOAP protocol 12

Main message exchange patterns 13

Mapping SOAP messages to operation invocations 14

Marshalling/unmarshalling principles 14

The Web Services Description Language 15

The SOAP binding 16

Code generation principles 17

WS-Addressing introduction 18

WS-Discovery introduction 19

WS-Eventing introduction 19

The DPWS device and hosted services model 20

Development process use cases 21

Services and device development 21

Pure client development 21

Peer-to-peer client development 21

Asynchronous and eventing client development 22

Services and device development 23

Development process overview 23

Service identification guidelines 23

Service interface specification in WSDL 24

PortTypes, operations and messages definition 24

Types definition 26

Bindings definition 26

Code generation 27

DPWS Core 2.1 User Guide Page 4

wsdl2h 28

soapcpp2 29

Service implementation 30

Implementation of service functions 30

Use of events 31

Generated notification functions 32

Sending event notifications 32

Service deployment and device configuration 33

Role of the registry 33

The registry object model 34

Devices and hosted services configuration 36

Persistent information management 39

Implementing the server architecture 40

Stack initialization 40

Configuring the server and its listeners 41

Implementing the server loop 42

Exiting the server loop 43

Compiling and linking 43

The DPWS Core libraries 43

Generated server and application files 44

Pure client development 45

Development process overview 45

Code generation 45

Code generation tools 45

Generated stubs 45

Client implementation 46

Client-side initialization 47

Devices and services discovery and metadata access 47

Service stub invocation 50

Request context clean up 52

Compiling and linking 53

The DPWS Core libraries 53

Generated client and application files 53

Peer-to-peer client development 54

Development process overview 54

Code generation 54

Integrating server and client code 55

DPWS Core 2.1 User Guide Page 5

Cache initialization and update 55

Invoking a remote operation from a service function 56

Compiling and linking 56

The DPWS Core libraries 56

Generated server, generated client and application files 56

Asynchronous and eventing client development 58

Development process overview 58

Code generation 58

Handler implementation 59

Server configuration 60

Handler deployment 60

Event subscription management 61

Implementing the server architecture 62

Compiling and linking 62

The DPWS Core libraries 62

Generated handler and application files 62

Advanced features 64

Customizing code generation 64

Mapping XML Schema types to specific C types 64

Editing the gSOAP annotated header file 65

Implementing custom marshallers/unmarshallers 65

Generic invocation 66

EPX API 66

Generic stubs 69

Generic skeletons 69

Compiling and linking 70

Advanced registry features 71

Dynamic registry modification API 71

Advanced cache features 71

Cache content control 71

Lifecycle callbacks 72

XML configuration 72

Registry configuration format 73

Cache configuration format 74

Subscription Manager configuration format 75

Usage 75

Compiling and linking 76

DPWS Core 2.1 User Guide Page 6

Dynamic deployment 77

Server-side support 77

Client-side support 79

Multiple network interfaces and IP protocols 80

Advanced stack customization 81

Operation timeouts 81

Connection keep-alive 82

HTTP chunked mode 83

MTOM support 83

Basic Profile 1.1 support 84

HTTP GET support 85

Advanced eventing features 86

Subscription management configuration 86

Monitoring event delivery failures 86

External Web server integration 87

Server configuration 87

HTTP request processing 88

Compiling and linking 89

Appendices 90

Error management 90

DPWS Core 2.1 User Guide Page 7

INTRODUCTION

THE DPWS CORE TOOLKIT
The DPWS Core (DC) toolkit provides a runtime environment and associated code

generation tools that enable the development and deployment of Web Services

implemented in the C language. Because it uses compact and portable C code for both

its libraries and the generated code, the DC toolkit is well-suited for the development

of Web Services applications in small embedded systems. To reinforce its focus on

embedded devices, the DC toolkit also supports the Devices Profile for Web Services

[DPWS], a specification that extends traditional Web Services with network discovery,

plug-and-play and asynchronous messaging features. DPWS support means that

devices and applications developed using the DC toolkit will automatically benefit

from increased communication capabilities and interoperability with other devices,

mobile phones and PDAs, home and office PCs and enterprise systems.

Main features of the DC toolkit include:

 A standard Web Services stack and code generators based on the gSOAP

[gSOAP] open-source software.

 A runtime container that allows the implementation and deployment of devices

and Web Services in accordance with the DPWS model.

 DPWS-compliant built-in services that provide support for network discovery,

device metadata access and event subscription management in client applications.

Advanced features include:

 Support for multiple network adapters and multiple IP protocols.

 XML-based and dynamic configuration of devices and services.

 Customizable transport layer supporting connection keep-alive, HTTP chunked

mode [HTTP/1.1], MTOM attachments [MTOM], and a pluggable architecture

allowing the replacement of the internal HTTP server by an external one.

THE DEVICES PROFILE FOR WEB SERVICES
A proposal for using Web Services protocols for device networking, entitled "Devices

Profile for Web Services” [DPWS], was submitted in May 2004 by a group of

companies. This subset of the Web Services protocol suite was originally designed to

become the next major version of the popular UPnP (Universal Plug-n-Play) Device

Architecture [UPnP]. It may still be eventually proposed as such, but for reasons of

market strategy related to the lack of backward compatibility between the UPnP and

DPWS protocol stacks, no date is set for this transition. Meanwhile, DPWS is set to

become an OASIS standard in 2009.

The advantages of using Web Services for device-to-device and device-to-workstation

communication relate both to operational aspects and to the development process:

 Unify protocols so that a single stack communicates with both devices and other

Web Services.

 Enable seamless integration of device networks, e.g. in plant floors, into

enterprise-wide information systems.

 Unify developer experience, knowledge and tools.

It may also be noted that DPWS is natively supported by Windows Vista and

Windows 7. This makes devices compliant with the DPWS specification easily

discoverable by PCs running one of these operating systems.

DPWS Core 2.1 User Guide Page 8

DPWS provides a small and efficient framework for peer-to-peer device interactions,

fully compatible with the Web Services family of specifications.

The DPWS specification defines an architecture that distinguishes two types of services:

devices and hosted services. Devices play an important part in the discovery and

metadata exchange procedures. Hosted services are application-specific Web

services that provide the functional behavior of the device. They rely on their hosting

device for discovery. The deployment of hosted services on a DPWS device is the

primary extensibility mechanism provided by the specification.

DPWS also specifies a set of built-in services:

 Discovery services [WS-Discovery]: these services are used by a device connected

to a network to advertise itself and by clients to discover devices. WS-Discovery

uses SOAP over UDP [SOAP-over-UDP] and a multicast address to broadcast and

listen to the discovery messages.

 Metadata exchange services [WS-Transfer] [WS-MetadataExchange]: these

services can be used by a client to retrieve a device metadata, including the

device hosted services, and the metadata of those hosted services, such as WSDL

[WSDL 1.1] or XML Schema [XML Schema, Part 1] [XML Schema, Part 2]

documents.

 Events publish/subscribe services [WS-Eventing]: these services combine extensions

of application-defined services with built-in services, and allow clients to subscribe

to asynchronous messages (events) produced by a given application-defined

service and to manage the resulting subscriptions.

A DPWS client endpoint typically performs the following tasks:

 Discovery: discover relevant devices on the network. Discovery is based on device

types and scopes, which can be used to characterize a device with application-

specific, hierarchical information (typically, a geographical location or a network

location). Discovery is limited to the devices, and does not involve services.

 Description: retrieve the device description, get the list of hosted services, and

select relevant services and service descriptions from this list. Service description

relies on the standard WSDL language, which is supported by a large number of

development tools.

 Control: invoke operations on selected services to control the device.

 Eventing: subscribe to the service event sources.

Device
Device address (logical)
Model and device description

Policies (security, etc.)

Hosted service

•Device address

•ServiceID

Hosted service

•Device address

•ServiceID

Hosted service
Physical address
ServiceID

Policies (security, etc.)

App. services

Events

Discovery Services
Local metadatapublishing
Remote metadata cache

Address map

Eventing Services
Subscription
management

Execution Services
Soap1.2 engine
AddressingAPI

HTTP port
Physical address

UDP multicast port

WS-Transfer

WS-MetadataExchange
WS-Eventing

WS-Discovery

Notification

Invocation

Subscription

Soap1.2 over UDP

WS-AddressingSoap1.2

WS-Addressing

DPWS Core 2.1 User Guide Page 9

DOCUMENT GUIDE
This document is the user guide for the DPWS Core toolkit. It covers the general

principles of Web Services programming with the DC toolkit, and also provides

detailed guidance on the use of most of the toolkit features. The intended audience for

this guide includes software architects and software developers.

After this introduction, the next chapter, “DPWS Core development principles”,

provides a high-level view of Web Services and DPWS development principles,

including an overview of the main standards and technologies involved in the DPWS

specification. The section is concluded by a description of four development scenarios

that should cover most of the DPWS Core toolkit use cases.

The four following chapters describe in details the development process for each of

the previously introduced scenarios:

 The “Services and device development” scenario describes the development of a

device that only provides services to clients.

 The “Pure client development” scenario describes the opposite case of an

application which only consumes services from service providers.

 The “Peer-to-peer client development” scenario describes the development of a

device that also acts as a service consumer towards other providers.

 The “Asynchronous and eventing client development” addresses the specific case

of a client that sets up a server architecture to receive asynchronous messages,

such as event notifications.

The last chapter of the guide describes the “Advanced features” of the DPWS Core

toolkit. It is not particularly structured, and should be considered as a set of recipes

that can be read in (almost) no specific order.

Readers with experience in Web Services development may skip the first chapter,

even if it contains important information about DPWS and some of its supporting

specifications that are less “mainstream” than vanilla Web Services. Depending on

their use case, they may want to go directly to the “Services and device development”

or the “Pure client development” chapter. The two other development scenarios are not

recommended as entry points for first-time readers, as they strongly depend on

information provided in the two previous chapters.

Returning readers looking for a specific issue resolution may want to jump directly to

one of the “Advanced features” sections, such as:

 “Customizing code generation”: a deeper look into the various code generation

features of the DPWS Core toolkit.

 “Generic invocation”: a mechanism that supports efficient SOAP messages

processing without requiring code generation.

 “XML configuration”: a feature that provides an XML-based configuration

language for initializing a DPWS Core application.

 “Dynamic deployment”: a feature that supports dynamic reconfiguration of a

running platform through the modification of the set of devices and services that it

executes.

 “Advanced stack customization”: advanced features such as connection keep-alive,

operation timeout management, MTOM support and HTTP chunked mode support.

This User Guide is complemented by the DPWS Core API reference manual [DC API],

which provides a detailed description of all the functions and structures used to

develop an application with the DPWS Core toolkit.

DPWS Core 2.1 User Guide Page 10

DEFINITIONS AND NOTATIONS

NAMESPACES AND PREFIXES IN USE

The following table shows the namespaces and associated prefixes that are used in

this document. The choice of the prefixes is not semantically significant, and is

overwritten by declarations found in actual XML documents.

Namespace prefix Namespace URI

soap http://www.w3.org/2003/05/soap-envelope

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing

dpws http://schemas.xmlsoap.org/ws/2006/02/devprof

wse http://schemas.xmlsoap.org/ws/2004/08/eventing

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

wsoap http://schemas.xmlsoap.org/wsdl/soap/

wsoap12 http://schemas.xmlsoap.org/wsdl/soap12/

xop http://www.w3.org/2004/08/xop/include

In addition, the „tns‟ prefix is used in some WSDL and XML Schemas samples to refer

to the target namespace being defined by the sample document under consideration.

It is not semantically significant either.

STYLE CONVENTIONS

This document uses the following conventions to identify special paragraphs:

Code and data file snippets use this style.

Warning: complex or unclear aspects that are often the source of errors are identified

with this style.

Advanced use:

Advanced features that do not need to be fully understood when getting started with

the DPWS Core toolkit are described using this style.

In addition, references to API functions, structs or constants, as well as references to

XML elements or attributes use this font.

REFERENCES

[BP 1.1]: K. Ballinger, et al, "Basic Profile Version 1.1", August 2004. (See

http://www.ws-i.org/Profiles/BasicProfile-1.1.html)

[DC API]: “DPWS Core API reference manual”, March 2009. Available in the DPWS

Core distribution package.

[DPWS]: S. Chan, et al, “Devices Profile for Web Services”, February 2006. (See

http://schemas.xmlsoap.org/ws/2006/02/devprof/)

[gSOAP]: R. van Engelen, “SOAP C/C++ Web Services”. (See

http://www.cs.fsu.edu/~engelen/soap.html). Note that this site contains the latest

version of the gSOAP documentation, which is not the one the DPWS Core toolkit is

built upon.

http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2006/02/devprof
http://schemas.xmlsoap.org/ws/2004/08/eventing
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2004/08/xop/include
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://schemas.xmlsoap.org/ws/2006/02/devprof/
http://schemas.xmlsoap.org/ws/2005/05/devprof/
http://schemas.xmlsoap.org/ws/2006/02/devprof/
http://www.cs.fsu.edu/~engelen/soap.html
http://www.cs.fsu.edu/~engelen/soap.html

DPWS Core 2.1 User Guide Page 11

[gSOAP Guide]: R. van Engelen, “gSOAP 2.7.6 User Guide”, September 2005.

Available in the DPWS Core distribution package.

[HTTP/1.1]: R. Fielding, et al, "Hypertext Transfer Protocol -- HTTP/1.1", June 1999.

(See http://www.ietf.org/rfc/rfc2616.txt)

[MTOM]: N. Mendelsohn, et al, "SOAP Message Transmission Optimization

Mechanism", January 2005. (See http://www.w3.org/TR/2005/REC-soap12-mtom-

20050125/)

[RFC 4122]: P. Leach, et al, "A Universally Unique IDentifier (UUID) URN Namespace",

July 2005. (See http://www.ietf.org/rfc/rfc4122.txt)

[SOAP 1.1]: D. Box, et al, “Simple Object Access Protocol (SOAP) 1.1", May 2000.

(See http://www.w3.org/TR/2000/NOTE-SOAP-20000508/)

[SOAP 1.2, Part 1]: M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging

Framework", June 2003. (See http://www.w3.org/TR/2003/REC-soap12-part1-

20030624/)

[SOAP 1.2, Part 2, Section 7]: M. Gudgin, et al, " SOAP Version 1.2 Part 2: Adjuncts,

Section 7: SOAP HTTP Binding", June 2003. (See http://www.w3.org/TR/2003/REC-

soap12-part2- 20030624/#soapinhttp)

[SOAP-over-UDP]: H. Combs, et al, "SOAP-over-UDP", September 2004. (See

http://schemas.xmlsoap.org/ws/2004/09/soap-over-udp)

[UPnP]: “UPnP Device Architecture 1.0”, April 2008. (See

http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf)

[WS-Addressing]: D. Box, et al, "Web Services Addressing (WS-Addressing)", August

2004. (See http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/)

[WS-Discovery]: J. Beatty, et al, "Web Services Dynamic Discovery (WS-Discovery)",

April 2005. (See http://schemas.xmlsoap.org/ws/2005/04/discovery)

[WSDL 1.1]: E. Christensen, et al, "Web Services Description Language (WSDL) 1.1",

March 2001. (See http://www.w3.org/TR/2001/NOTE-wsdl-20010315)

[WSDL Binding for SOAP 1.2]: K. Ballinger, et al, "WSDL Binding for SOAP 1.2", April

2002. (See http://schemas.xmlsoap.org/wsdl/soap12/)

[WS-Eventing]: L. Cabrera, et al, "Web Services Eventing (WS-Eventing)", August

2004. (See http://schemas.xmlsoap.org/ws/2004/08/eventing/)

[WS-MetadataExchange]: K. Ballinger, et al, "Web Services Metadata Exchange

(WS-MetadataExchange)", September 2004. (See

http://schemas.xmlsoap.org/ws/2004/09/mex/)

[WS-Transfer]: J. Alexander, et al, "Web Service Transfer (WS-Transfer)", September

2004. (See http://schemas.xmlsoap.org/ws/2004/09/transfer/)

[XML Schema, Part 1]: H. Thompson, et al, "XML Schema Part 1: Structures", May

2001. (See http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/)

[XML Schema, Part 2]: P. Biron, et al, "XML Schema Part 2: Datatypes", May 2001.

(See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/)

http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.ietf.org/rfc/rfc4122.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part2-%2020030624/%23soapinhttp
http://www.w3.org/TR/2003/REC-soap12-part2-%2020030624/%23soapinhttp
http://schemas.xmlsoap.org/ws/2004/09/soap-over-udp
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://schemas.xmlsoap.org/ws/2005/04/discovery
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://schemas.xmlsoap.org/wsdl/soap12/
http://schemas.xmlsoap.org/ws/2004/08/eventing/
http://schemas.xmlsoap.org/ws/2004/09/mex/
http://schemas.xmlsoap.org/ws/2004/09/transfer/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

DPWS Core 2.1 User Guide Page 12

DPWS CORE DEVELOPMENT PRINCIPLES

WEB SERVICES AND DPWS PRINCIPLES
The provision and consumption of Web Services can be considered from two different

perspectives:

 An abstract level, in which a Web Service provider exposes some business

functionality as an interface, or “contract”, encapsulating and hiding the

implementation details. Each interface features one or several related operations

relevant to the exposed business functionality. Web Services consumers use the

published contract to access to the business functionality.

 A concrete level, in which each Web Service operation invocation is translated into

one message exchange on the wire between the Web Service consumer and the

Web Service provider.

The role of the DPWS Core (DC) toolkit is to bridge the gap between the two

perspectives, by providing both a runtime environment and code generation tools

allowing:

 Web Services providers to focus on the definition of the Web Services contracts

and the implementation of the business functionality, without worrying about the

message transport aspects and the translation from the wire representation of

messages to the corresponding operation invocation.

 Web Services consumers to easily map the published Web Services contracts to

remote functions that can be directly invoked from client code, again without

specific knowledge about the underlying messaging mechanisms.

Although the DC toolkit goal is to hide the complexity of Web Services mechanisms

and protocols from the developer, this section nevertheless provides an overview of

the main principles and messaging mechanisms involved in Web Services applications,

as understanding those mechanisms may prove useful when tuning or debugging an

application.

THE SOAP PROTOCOL

Web Services use SOAP [SOAP 1.1] [SOAP 1.2, Part 1] as their messaging protocol. It

is a simple, extensible, XML-based protocol that represents each message as a

soap:Envelope element containing an optional soap:Header element and a

mandatory soap:Body element:

 The soap:Header element can contain one or several header blocks, which are

XML elements used to control how the message is transmitted from its sender to its

intended receiver, possibly going through some intermediate nodes. The addition

of header blocks is the primary extensibility mechanism for the SOAP protocol:

additional specifications use this mechanism to normalize the use of header blocks

for routing, reliability, security…

 The soap:Body element contains the application-specific message payload. It is

normally defined by each application, the exception being faults (normally sent

by a service provider in case of error), which are represented by a predefined

soap:Fault element.

DPWS Core 2.1 User Guide Page 13

The SOAP protocol is transport-agnostic, and can therefore be used in combination

with different transport layers. The set of rules defining the association of the SOAP

protocol with a specific transport protocol is called a binding. The SOAP protocol

defines an extensible binding framework that provides general rules for specifying

new bindings. Most applications use the standard HTTP binding, defined in the SOAP

specification [SOAP 1.1] [SOAP 1.2, Part 2, Section 7], but DPWS also requires the

use of the SOAP-over-UDP binding [SOAP-over-UDP] for discovery.

There are two versions of the SOAP protocol, which are very similar from the

functional point of view, but not interoperable on the wire:

 SOAP 1.1: although not formally a standard, this version is currently the most

widely used. It is referenced by several Web Services standards, most notably

WS-I Basic Profile 1.1, which is an ISO standard aiming at achieving the broadest

interoperability across Web Services stack vendors.

 SOAP 1.2: this version is a W3C standard. It is widely supported by recent Web

Services stacks, but not always by older toolkits. The DPWS specification requires

devices and hosted services to use SOAP 1.2.

The DC toolkit uses by default the SOAP 1.2 version, as required by the DPWS

specification. However, it is possible to configure the DC stack to also support WS-I

Basic Profile 1.1 [BP 1.1], and thus achieve interoperability with a large range of

Web Services tools and applications.

MAIN MESSAGE EXCHANGE PATTERNS

The SOAP protocol defines a message construct and a processing model for a single

exchange between a sender and a receiver. Single exchanges can then be further

combined to create more complex message exchange patterns.

The DC toolkit supports three predefined message exchange patterns (MEP):

 One-way: a single message sent by a service consumer to a service provider. This

MEP corresponds to the invocation of a service operation with no expected

response.

 Request/Response: a request message sent by a service consumer to a service

provider, followed by a response message sent by the provider to the consumer.

This MEP corresponds to the invocation of a service operation that returns a

response.

Protocol Headers

SOAP Envelope

SOAP Header

SOAP Body

Protocol headers (HTTP, SMTP, …)

<soap:Envelope>

<soap:Header>

<soap:Body>

Header block 1

Header block N

DPWS Core 2.1 User Guide Page 14

 Notification: a message sent by an event source (service provider) to an event sink

(service consumer). This MEP is less common than the two previous ones and is

defined by the WS-Eventing [WS-Eventing] specification.

MAPPING SOAP MESSAGES TO OPERATION INVOCATIONS

Web Services invocation involves mapping the messages described above to actual

service operations.

In the case of requests (either one-way or two-way) and notifications, enough

information must be provided in the message to allow its dispatch on the receiver side

to the appropriate message handler. This information must include:

 The receiver endpoint identification: A service exposes one or more endpoints

(URLs) where the service is available. As messages directed to several services can

be received through the same Web Services host, each message must contain

either the URL of the target service, or some other logical id that can be mapped

to the appropriate service by the host.

 The operation identification: a message relates to a specific operation in the

target service interface. This operation must therefore be identified in the request

message.

Depending on the transport protocols and SOAP extensions used to transmit the

message, the above information can take several forms:

 The receiver endpoint can be carried as part of the HTTP request, or as a specific

SOAP header block, for instance when using WS-Addressing [WS-Addressing].

 The operation identification can be specified in a HTTP header, in a SOAP header

block or directly in the message body.

In the case of responses, the amount of required information depends on the way the

response is returned to the service consumer:

 When the response is sent back synchronously to the service consumer, e.g. when

using the standard HTTP binding, there is no real need for specific information, as

the service consumer is waiting for the response and knows which message to

expect.

 When the response is sent back asynchronously and needs to be dispatched to an

appropriate handler, either an identification of the receiver and the operation or

a correlation id referring to the request message may be required.

The DC toolkit uses code generation techniques to encapsulate the construction (on the

sender side) and the dispatch (on the receiver side) of messages. The generated code

ensures that the appropriate information is associated to each exchanged message.

MARSHALL ING/UNMARSHALL ING PR INCIPLES

The second aspect that must be addressed when mapping messages to operation

invocations is the transformation between the message payload (the soap:Body

content) and its native code representation: on the sender side, the operation

parameters are serialized (marshalling) as the message payload, and are

transformed back (unmarshalling) into parameters on the receiver side before the

invocation of the service operation.

There are two general approaches used to map XML documents to native data

structures, independently from the programming language in use:

DPWS Core 2.1 User Guide Page 15

 Generic mapping: in this approach, the XML document content is directly

represented in memory as either a generic object structure (e.g. the standard

Document Object Model – DOM) or as a stream of “events”, each event

representing a piece of information in the XML document (XML element start and

end, character data, attribute…).

 Specific mapping: In this approach, each XML document is mapped onto a specific

native object (C struct, C++, Java or C# class…), depending on the type of the

XML document. This approach generally requires code generation to efficiently

perform the transformation in both directions.

The DC toolkit supports both approaches, using an event streaming API for the first

case and generated code for the second. When starting with the DC toolkit, it is

recommended to start with the code generation approach, which is much simpler to use.

THE WEB SERVICES DESCRIPT ION LANGUAGE

The previous sections have introduced the messaging mechanisms used by Web

Services stacks to implement the concrete mapping between operation invocations and

messages exchanged over the wire. This section focuses on the abstract Web Services

perspective, and more specifically on the language used to describe Web Services

interfaces and operations, and to relate those operations to concrete messages.

The Web Services Description Language [WSDL 1.1] is a specification of an XML

language used for describing services as a set of endpoints exposing their capabilities

through operations processing messages. As for SOAP, two versions of WSDL are

available:

 WSDL 1.1: although not formally a standard, this version is currently the only one

supported by most Web Services toolkits, including recent ones. It is referenced by

WS-I Basic Profile 1.1, which clarifies and restricts its use to ensure

interoperability between applications developed using different Web Services

toolkits.

 WSDL 2.0: this version is a W3C standard. It is currently not supported by

mainstream Web Services toolkits.

The DC toolkit currently only supports WSDL 1.1.

WSDL 1.1 introduces the following concepts:

 Target namespace: each WSDL document defines a new namespace, which is used

to qualify the name of components defined in the document, in a way similar to

the one used for XML Schema components.

 Types: they provide the basic data types definitions that are used to build

message constructs. Although in theory types can be expressed using different

type systems, in practice XML Schema is the only one supported by most tools.

WSDL types must therefore be XML Schema [XML Schema, Part 1] [XML Schema,

Part 2] types and elements, which can be either defined inline in the WSDL

document or imported from an external XML Schema document.

 Messages: they define the abstract structure of the messages received and sent

by the services. A message has zero or more logical parts, each part having a

name and being associated to either a XSD type or element.

 PortTypes and abstract operations: portTypes define the interfaces of the

services. They are named collections of abstract operations, each operation

having a name and being associated with input and/or output messages, as well

as possible faults.

DPWS Core 2.1 User Guide Page 16

 Bindings and concrete operations: while portTypes provide the abstract definition

of the service interfaces, bindings define the concrete format and protocol used

by a portType operations and messages. A binding references a single portType,

and is used to associate format and protocol-specific information to operations

and messages defined in the portType. Although WSDL is designed to be

extensible and to support numerous binding types, in practice most tools, including

the DC toolkit, only support the definition of bindings for SOAP 1.1 and SOAP 1.2

over HTTP [WSDL Binding for SOAP 1.2]. Details about these bindings are given

below.

 Services and ports: services are defined as a collection of ports, each port

representing the association of a network address and a specific binding: for the

commonly used SOAP over HTTP bindings, the address must be an HTTP URL.

The production of the WSDL documents describing the services of an application is a

critical step in the application development process: the DC toolkit is based on a

contract-first approach, and requires WSDL and XML schemas documents as inputs to

the code generation both on the client and on the server side.

THE SOAP B INDING

The SOAP binding (either for SOAP 1.1 or SOAP 1.2) is the most commonly used

binding in WSDL documents, and the only one currently supported by the DC toolkit.

The use of this binding means that messages received and sent on the endpoint

associated to the binding are SOAP messages (either SOAP 1.1 or SOAP 1.2

depending on the version of the binding used). The SOAP binding specifies the

following information:

 Transport protocol: the transport used by the SOAP messages. In practice only the

HTTP transport is supported by most tools.

 Operation action: the action URI associated to each operation. When specified,

this URI should be used as the value of the SOAPAction HTTP header. It is intended

to be uniquely associated to a given operation and to be used for dispatching

incoming request messages on the server side.

 Operation style: this controls how the parts of the operation messages are

assembled inside the message Body. The style can be either “document” or “rpc”,

and can be specified globally for the binding or individually for each operation.

Document style means that each part of the operation messages is serialized as

definitions

types

MessageMessagemessage

portType

operationoperationoperation

portType

operationoperationoperation

portType

operationoperationoperation

portType

operationoperationoperation

portType

operationoperationoperation

binding

operationoperationoperation

service

operationoperationport

service

operationoperationport

service

operationoperationport

DPWS Core 2.1 User Guide Page 17

an XML element inside the message Body. Rpc style means that each part of the

operation messages is either a parameter or a return value and appears inside a

wrapper element, representing the operation, within the message Body.

 Message encoding: this controls whether message parts are serialized in XML

according to their XML schema definition („literal‟ use), or whether a specific

encoding is used („encoded‟ use).

Because the above rules allow for a lot of flexibility in the format of messages, they

have induced quite a few interoperability problems. Therefore, the WS-I Basic Profile

1.1 [BP 1.1] has added the following restrictions to the SOAP binding:

 Only the HTTP transport can be used.

 The SOAPAction HTTP header should not be used for message dispatch on the

server side. Rather, all operations in a binding are required to have distinct

signatures, where the operation signature is defined as the child element of the

Body of the operation input message.

 Only the literal encoding is allowed, in combination with either the „document‟ or

„rpc‟ style.

The BP 1.1 rules apply only to the SOAP 1.1 protocol and binding. The DPWS

specification defines the same restrictions for the SOAP 1.2 protocol and binding, with

the addition that each service must feature at least a document/literal binding.

In order to maximize interoperability, it is therefore recommended to use

document/literal SOAP bindings when developing Web Services with the DC toolkit.

CODE GENERATION PRINC IPLES

Code generation is used in Web Services development to bridge the gap between the

abstract service interfaces described through WSDL documents and concrete SOAP

messages exchanged on the wire. The following diagram shows the relation between

user-defined code, on the server and on the client, and generated code:

On the server side, generated code is composed of:

 Skeleton: this code is used by the message server, once it has identified the

destination service, to dispatch incoming messages to the appropriate operation

handler. It is also used to send back the response message for request/response

operation.

 Marshalling/unmarshalling: generated marshalling/unmarshalling code is used by

the server to translate the contents of XML messages into native objects; and vice

versa.

Stub

Marshalling Demarshalling

Skeleton

Marshalling Demarshalling

Client code Server code

Request (SOAP-XML)

Response (SOAP-XML)

DPWS Core 2.1 User Guide Page 18

The user-defined server code consists of functions implementing the service operations.

These functions are called by the skeleton, and take as input and output parameters

the native objects that are transformed by the marshalling/unmarshalling code.

On the client side, generated code is composed of:

 Stub: this code provides the remote service interface (i.e. set of functions) that can

be used by clients to invoke the service operations. Its role is to translate the

function invocation into a message and send it to the service, and receive and

process the response message (in case of request/response operations).

 Marshalling/unmarshalling: this code has the same role on the client side as on the

server side.

The user-defined client code uses the stub generated functions to invoke remote service

operations. Input and output parameters of these functions are native objects that are

transformed by the marshalling/unmarshalling code.

WS-ADDRESSING INTRODUCTION

The purpose of WS-Addressing [WS-Addressing] is to define appropriate SOAP

headers to store the message addressing information that is usually stored in transport

protocol headers (such as those used in HTTP), thereby decoupling the message content

from the transport and enabling more complex message exchange patterns than the

HTTP request-response model. WS-Addressing provides a well-defined way to do

asynchronous one-way messaging, with the ability to correlate messages. WS-

Addressing headers add the following message addressing properties to a SOAP

message:

 Destination (URI): mandatory address of the receiver of the message.

 Action (URI): mandatory unique identifier for the semantics of the message, e.g. its

associated operation.

 Reply endpoint (EPR): reference of the receiver of replies.

 Message id (URI): a unique identifier for a message.

 Relationship (QName, URI): a pair of values which indicates how the message

relates to another. The « Reply » predefined relationship type is used to refer in a

reply to the message id property of the request.

 Source endpoint (EPR): Optional reference of the sender endpoint.

 Fault endpoint (EPR): Optional reference of the receiver for faults related to the

message.

The first two properties are required and can be used by a Web Services server to

dispatch the message to the appropriate service and operation handler.

The key abstraction underlying WS-Addressing is the Endpoint Reference (EPR),

composed of an Address and optional Reference Parameters and Metadata

description, which identifies a resource. The Address can be a logical or physical

address of the service (a URI). The Reference Parameters are state information that the

service uses to disambiguate resources (e.g. a session context), and are opaque to the

caller. A caller obtains an EPR for the resource and uses the Address field for sending

a message to the resource, by placing that Address in the corresponding SOAP header

and adding the Reference Parameters as additional SOAP headers, allowing the

service receiving that message to route it to the appropriate resource.

WS-Addressing also specifies an extension to the WSDL 1.1 language, as a new

attribute that allows actions to be associated to operations input and output messages

in portTypes definitions. This attribute is optional, and a simple syntactic rule can be

DPWS Core 2.1 User Guide Page 19

used by tools to generate a unique action URI for each message from the service

target namespace, the portType name and the operation name.

WS-Addressing has been adopted as a W3C standard in May 2006. DPWS however

references an earlier draft of the specification (from August 2004). This earlier draft is

the one used by the DC toolkit.

WS-D I SCOVERY INTRODUCTION

WS-Discovery [WS-Discovery] is based on SOAP 1.2 and builds on WS-Addressing:

all discovery messages are SOAP 1.2 messages extended with WS-Addressing

headers.

The WS-Discovery specification defines a multicast discovery protocol to search for

and locate resources or, more specifically, Target Services available to network-

connected clients. The primary mode of discovery is a client searching for one or more

Target Services. The search can either specify the type of the Target Service or a

scope in which the Target Service resides or both, and is materialised as a Probe

message sent to a multicast group. Target Services that match the probe send a Probe

Match response in unicast mode. Target Services can also be localized by name,

through a similar protocol exchange involving a multicast Resolve message and a

unicast Resolve Match response.

To minimize the need for polling, when a Target Service joins the network, it announces

itself by sending a multicast Hello message. By listening to the multicast group, clients

can detect newly-available Target Services without repeated probing. When leaving

the network in an orderly manner, a Target Service announces this through a Bye

message.

The WS-Discovery protocol messages are sent over UDP [SOAP-over-UDP] in order to

minimise network traffic overhead.

Multicast-based discovery is limited to local subnets. In order for discovery to be

scalable to enterprise-wide scenarios, WS-Discovery introduces the notion of discovery

proxy (DP). A DP has two functions: suppressing multicast discovery (to reduce network

traffic) and extending the network reach for the discovery protocol beyond the local

subnet. When a DP detects a probe or resolution request sent by multicast, the DP

sends a Hello for itself. By listening for these announcements, clients detect DPs and

switch to use a DP-specific protocol. However, when a DP is unresponsive, clients revert

to use the ordinary discovery protocol. While the definition of a DP-specific protocol is

beyond the scope of WS-Discovery, it is expected that any such protocol would define

search messages that clients send directly (in unicast mode) to the DP rather than to a

multicast group; a DP could thus be deployed and automatically manage a network

without any changes to the deployed services. The Discovery Proxy mechanism is an

optional feature of WS-Discovery, currently not supported by the DPWS Core toolkit.

WS-Discovery metadata information is limited to the strict minimum, in order to reduce

the size of the multicast UDP messages. Therefore, an additional protocol is used by

DPWS to obtain a more complete description of a Target Service, once it has been

discovered. This protocol is further detailed in the section introducing the DPWS device

model.

WS-EVENTING INTRODUCTION

WS-Eventing [WS-Eventing] describes a protocol allowing one Web Service (called an

"event sink") to register interest (called a "subscription") with another Web Service

(called an "event source") in receiving messages about events (called "notifications").

To improve robustness, the subscription is leased by an event source to an event sink,

DPWS Core 2.1 User Guide Page 20

and the subscription expires over time. An event source may allow an event sink to

renew the subscription. This publish-subscribe specification is not very complex, yet

quite powerful; and is intended to enable implementation of a range of applications,

from device-oriented eventing to enterprise-scale publish-subscribe systems, on top of

the same substrate.

WS-Eventing is based on SOAP and builds on the WS-Addressing standard. By re-

using WS-Addressing on top of SOAP, together with its underlying resource model,

WS-Eventing does not need to define any new protocol. It merely specifies the WSDL

definitions associated with the subscription management operations: Subscribe,

Unsubscribe, Renew (used by an event sink) and SubscriptionEnd (used by an event

source when terminating its event notification service).

Event notification messages themselves are one-way messages, the content of which is

not constrained by WS-Eventing: the service WSDL document describes both the event

messages, which may include any data of any type, and the events, which are

declared in the service portType as output-only operations referencing the event

messages. In theory, output-input operations (also called Solicit-Response operations)

could also be defined, but they are not currently supported in the DC toolkit.

An event source may support filtering to limit the amount of notifications sent to the

event sink. If it does and a subscribe request contains a filter, the event source sends

only notifications that match the requested filter.

THE DPWS DEVICE AND HOSTED SERVICES MODEL

The DPWS specification references all the specifications described in previous sections

and profiles them for use in embedded devices.

DPWS profiles WS-Discovery by introducing a distinguished type of service, called a

“device”, which must be a compliant Target Service. Devices are designed to host and

advertize other services.

A device exposes the standard WS-Discovery information:

 Endpoint reference: a WS-Addressing EPR that should feature a stable URI as its

address field. The DPWS specification recommends the use of a UUID.

 Types: a set of qualified names (QNames). Each type identifies a set of messages

that the device can receive or send. DPWS introduces a predefined dpws:Device

type that identifies DPWS-compliant devices. Additional application-defined

types may be added to this set: those types may be abstract, i.e. represent a

functionality provided by their hosted services (e.g. a MultiFunctionPrinter device

that exposes both a Print service and a Scan service), or concrete, e.g. a WSDL

portType, in which case the functionality is directly offered by the device

endpoint. The latter use is not recommended, as it does not follow the device and

hosted services model proposed by DPWS.

 Scopes: a set of URIs representing application-specific logical grouping. Scopes

can be used for instance to represent a geographical location, a position in a

network topology, management information…

 Transport addresses: the set of URLs which can be used to reach the device.

A device acts as a metadata resource for both itself and its hosted services. By

including the predefined dpws:Device type in its types, a device indicates that its

endpoints (defined by the device transport addresses) support the WS-Transfer Get

operation [WS-Transfer] to allow clients to retrieve its metadata.

DPWS Core 2.1 User Guide Page 21

The device metadata is returned as a WS-MetadataExchange [WS-

MetadataExchange] document, and contains the following information:

 Device model: this includes manufacturer name and URL, model name, number and

URL, and the device presentation URL (i.e. device home page).

 Device instance: this includes the device “friendly name”, its serial number and its

firmware version.

 Hosted services: this includes the list of hosted services. The description of each

hosted service contains a set of WS-Addressing EPRs which can be used to contact

the service, the set of types (normally WSDL portTypes) implemented by the

service, and a URI representing a service id.

 WSDL documents: this includes the WSDL documents describing the Web Services

that are directly offered by the device endpoints.

Hosted services can also be queried for their metadata, using the same WS-Transfer

Get operation on the hosted service endpoints. Service metadata includes:

 Relationship to the hosting device: this includes a description of the device

endpoint reference and types, and of the hosted service endpoint references,

types and service id.

 WSDL documents for the hosted service.

DEVELOPMENT PROCESS USE CASES
This section introduces the main development scenarios in which the DPWS Core toolkit

can be used. The development process for each scenario is then further detailed in a

separate chapter of this user guide.

SERVICES AND DEVICE DEVELOPMENT

This scenario corresponds to the development of a stand-alone device that exposes its

functionalities through hosted services. This requires the definition and implementation

of the device hosted services, which follow the usual Web Services development

pattern: identification of the Web Services interfaces, description of the Web Services

using the WSDL language, implementation of the services and setup of the server

message dispatch mechanisms. It also involves the configuration of the device with

metadata information required for the discovery and plug-and-play mechanisms, as

well as the use of the specific mechanisms offered by the DC toolkit for event

publishing.

PURE CL IENT DEVELOPMENT

This scenario corresponds to the development of a simple client that discovers devices

and consumes Web Services. Pure clients running on workstations and enterprise

servers are not the primary target of the DC toolkit, as other Web Services

technologies based on the Java or .NET platforms are available and often preferred

to C stacks in such environments. However, the DC toolkit might still be useful for the

development of simple test clients on development platforms, as well as in cases where

network discovery and plug-and-play are required, as WS-Discovery is not yet

supported in all mainstream products.

PEER-TO-PEER CL IENT DEVELOPMENT

This scenario corresponds to the development of a device that needs to consume other

Web Services (provided by either another device or an external Web Services

application) to provide its business functionality. In such cases, the device will need to

use both the server part and client part of the DC toolkit: business operations exposed

DPWS Core 2.1 User Guide Page 22

as Web Services will use in their implementations the discovery and service invocation

capabilities offered by the DC client stack.

This development scenario is useful when designing and implementing a full service-

oriented architecture for devices, in which devices interoperate in a peer-to-peer

manner. It is also useful in hierarchical architectures, in which higher-level devices

orchestrate the behavior of lower-level ones.

ASYNCHRONOUS AND EVENTING CL IENT DEVELOPMENT

This scenario corresponds to the development of a device (acting as a client) or a pure

client that needs to receive asynchronous messages from service providers. This can

occur in two cases: (i) when using the explicit reply address feature of WS-Addressing,

or (ii) when subscribing to event sources compliant with WS-Eventing. In both cases, the

client will need to use part of the DC server stack, in order to listen to incoming

asynchronous messages, receive them and dispatch them to the appropriate message

handlers. When the client is a device, the server stack is already present and only

needs to be configured with the asynchronous message handlers. When the client is a

pure client, its architecture must be extended with the server message dispatch

mechanisms.

DPWS Core 2.1 User Guide Page 23

SERVICES AND DEVICE DEVELOPMENT

DEVELOPMENT PROCESS OVERVIEW
The following figure highlights the main steps in the development of a device and its

hosted services using the DC toolkit.

The first four steps are required in the development of any Web Services applications,

and, except for the use of events, do not feature any aspects specific to device

development.

The fifth step on the other hand is specific to a DPWS device development, as it

consists in configuring the device with appropriate information to allow it to

participate in the discovery exchanges.

The last two steps are also standard steps in Web Services application development.

The above steps are further detailed in the following sections.

SERVICE IDENTIFICATION GUIDELINES
The first step in the development of a device using the DC toolkit is the identification of

the hosted Web Services that will be deployed on the device. Examples of Web

Services include:

 Control services: these services are used to expose the primary functionality of a

device. Typical examples of control operations exposed by control services

include for instance a switchOn(boolean) operation for a lighting device or a

startCycle(temperature, duration) operation for a washing machine.

 Management services: these services are used to expose the configuration,

monitoring and diagnosis capabilities of the device.

Although the above distinction may be useful at design time, all Web Services are

handled in the same way by the DC toolkit.

Service identification may be easier when the device under development must comply

with existing standards: in such a case, services and their interfaces may be already

•Service skeletons generation

•Service operations implementation

•Use of events

•Hosted services deployment

•Discovery and device metadata configuration

DPWS Core 2.1 User Guide Page 24

defined, and the first two steps of the development process may be ignored. This is the

case for instance when using standard management services such as the ones defined

by WS-Management, or when implementing control services for a standard device in

a vertical domain (e.g a Print service for a standard DPWS printer).

However, in many cases, the device developer must identify the services to be

exposed by the device. The following guidelines may be used to help identify and

define these services:

 Identify stable interfaces: one of the key features of service-oriented design is the

strong separation between interfaces and implementations. This means that the

implementation of a service can easily be modified while preserving the same

interface. In order to leverage this benefit, it is important to design the service

interface in a way that guarantees its stability over time. Stability can be

achieved by considering a set of use cases large enough to encompass the

anticipated use of the service over its complete life cycle.

 Define coarse-grained operations: although the granularity of service operations

is directly dependent on the specific service functionality and must be defined on

a case-by-case basis, it is generally recognized that defining coarse-grained

operations rather than fined-grained ones is amenable to more flexible

architectures. Coarse-grained operations hide more details of an implementation:

compare for instance a startCycle operation with a set of operations that

would control each individual washer variable involved in the washing cycle

operation. They also reduce the need for service consumers to maintain server

state when executing a sequence of fine-grained operations: the state is instead

maintained by the server while executing the larger operation.

 Promote loose coupling: reducing the coupling between service providers and

service consumers is another fundamental goal of a well-designed service-

oriented architecture. It allows services to be reused by new clients that were not

taken into consideration at service design time, and clients to continue working

with new versions of services. Stable interfaces and coarse-grained operations

are two properties that contribute to loose coupling, as are other properties such

as platform independence (e.g. avoiding the use of platform-specific types in XML

serialization) and the use of asynchronous communications.

SERVICE INTERFACE SPECIFICATION IN WSDL
Once the services are identified, the second step requires the formal specification of

these services using WSDL and XML Schemas documents. This involves:

 The definition of the service portTypes, operations and message ;

 The definition of the types used in messages, as XML Schema types and elements ;

 The definition of the service bindings.

Note that the above list is ordered by the logical steps required in the design of the

service specification, not by the order in which corresponding XML elements appear in

the WSDL document.

PORTTYPES , OPERATIONS AND MESSAGES DEF INIT ION

The service interface is represented by its portTypes. A wsdl:portType element has

a „name‟ attribute and contains a set of wsdl:operation children. Each

wsdl:operation element has a „name‟ attribute, and contains a wsdl:input

and/or a wsdl:output child representing messages used by the operation.

DPWS Core 2.1 User Guide Page 25

The following example is an extract from a complete WSDL document that focuses on

the portType declaration for a washing machine service. Complete WSDL examples

can be found in the samples directory of the DC toolkit package:

<wsdl:portType name="Wash" wse:EventSource="true">

 <wsdl:documentation>

 This port type defines operations for launching washing cycles.

 </wsdl:documentation>

 <wsdl:operation name="LaunchCycle">

 <wsdl:documentation>

 Start a washing cycle.

 </wsdl:documentation>

 <wsdl:input message="tns:LaunchCycleMsg" />

 </wsdl:operation>

 <wsdl:operation name="GetCycleStatus">

 <wsdl:documentation>

 Returns progress information on the running cycle.

 </wsdl:documentation>

 <wsdl:input message="tns:GetCycleStatusReqMsg"

 wsa:Action="http://www.soa4d.org/WashingMachine/GetCycleStatus"/>

 <wsdl:output message="tns:GetCycleStatusRespMsg"

 wsa:Action="http://www.soa4d.org/WashingMachine/CycleStatus"/>

 </wsdl:operation>

 <wsdl:operation name="CycleEnded">

 <wsdl:documentation>

 Event sent when a cycle has ended.

 </wsdl:documentation>

 <wsdl:output message="tns:CycleEndMsg" />

 </wsdl:operation>

</wsdl:portType>

This example shows the three types of operations that are supported by the DC toolkit:

 The LaunchCycle operation is a one-way operation that starts a washing cycle.

It has only a wsdl:input message element.

 The GetCycleStatus operation is a request/response operation that returns the

current cycle state. It has a wsdl:input message element followed by a

wsdl:output message element.

 The CycleEnded operation is a notification operation that represents an event. It

has only a wsdl:output message element. The output-only operation is

interpreted as an event because the „wse:EventSource‟ attribute is set to true

in the wsdl:portType element.

This example also shows the use of the optional „wsa:Action‟ attribute for

associating action URIs to both input and output messages. When using WS-

Addressing, an action URI must be included in the wsa:Action header block for all

SOAP messages. Therefore, when the „wsa:Action‟ attribute is not explicitly

specified in the WSDL document, a default action URI for a message is generated

from the target namespace, the portType name and the input or output message

name:

default action URI = [target namespace]/[portType name]/[input | output name]

When the input or output message does not have an explicit name attribute (as is the

case in the example above), the message name is obtained from the operation name:

 For operations using a single message, the message name is the operation name.

 For request/response operations, the input (resp. output) message name is the

operation name with “Request” (resp. “Response”) appended.

All wsdl:input and wsdl:output elements used in operation definitions must have

a „message‟ attribute that contains a reference to a message definition. Message

DPWS Core 2.1 User Guide Page 26

definitions describe the abstract structure of the messages received and sent by

operations. When using a document/literal SOAP binding, as recommended by the

DPWS specification, the role of message definitions is simply to reference XML Schema

elements, as shown in the example below:

<wsdl:message name="LaunchCycleMsg">

 <wsdl:part name="body" element="tns:LaunchCycle" />

</wsdl:message>

<wsdl:message name="GetCycleStatusReqMsg" />

<wsdl:message name="GetCycleStatusRespMsg">

 <wsdl:part name="body" element="tns:CycleStatus" />

</wsdl:message>

<wsdl:message name="CycleEndMsg">

 <wsdl:part name="body" element="tns:CycleEnd" />

</wsdl:message>

Three of the four messages have a single part that references a global XML Schema

element through its element attribute. When using the document/literal SOAP binding

style, this means that the soap:Body of the corresponding SOAP message will contain

the referenced XML Schema element as its only child. The GetCycleStatusReqMsg

message has no parts, as it corresponds to a SOAP message with an empty soap:Body

element.

TYPES DEF INIT ION

While the portTypes, operations and messages describe the set of messages that a

service will receive and send, types are used to precisely define the structure of each

message. Types are referenced as QNames in message definitions, and may be either:

 Global XML Schema element declarations: these declarations should be used in

messages when document/literal SOAP bindings are used.

 Global XML Schema type definitions: these definitions may only be used in

messages when rpc/literal SOAP bindings are used.

The XML Schema definitions can appear either inline inside the WSDL document, or in

a separate XML Schema document, which must be imported using the xsd:import

element. In both cases, a xsd:schema element must appear as a child element of the

wsdl:types element.

The following snippet shows a global element declaration of the LaunchCycle

element, which is used by the message definitions in the previous example:

<wsdl:types>

 <xsd:schema

 targetNamespace="http://www.soa4d.org/DPWS/Samples/WashingMachine"

 xmlns:tns="http://www.soa4d.org/DPWS/Samples/WashingMachine">

 …

 <xsd:element name="LaunchCycle">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Temperature"

 type="tns:WaterTemperature" />

 <xsd:element name="SpinDryingSpeed" type="tns:SpinSpeed" />

 </xsd:sequence>

 <xsd:attribute name="Name" type="tns:Cycle" use="required" />

 </xsd:complexType>

 </xsd:element>

 …

 </xsd:schema>

</wsdl:types>

B INDINGS DEF INIT ION

In order to complete a service definition, one or several bindings must be defined for

each service portType. A binding provides protocol and message information that

DPWS Core 2.1 User Guide Page 27

completely defines the concrete messages exchanged between a service consumer and

a service provider. The DPWS specification requires each service to expose at least a

binding for SOAP 1.2 over HTTP, using the document/literal style.

The following example shows such a binding definition for the Wash portType

previously introduced:

<wsdl:binding name="Wash" type="tns:Wash">

 <wsoap12:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="LaunchCycle">

 <wsdl:input>

 <wsoap12:body use="literal" />

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="GetCycleStatus">

 <wsdl:input>

 <wsoap12:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <wsoap12:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="CycleEnded">

 <wsdl:output>

 <wsoap12:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

</wsdl:binding>

Noteworthy aspects of this binding definition include:

 Use of the "http://schemas.xmlsoap.org/wsdl/soap12/" namespace URI and

associated prefix (wsoap12) to identify the SOAP 1.2 binding.

 Specification of the HTTP transport.

 Use of the „document‟ style for the complete binding and the „literal‟ encoding for

each message body.

 No use of the SOAPAction attribute in operation elements, as action URIs are

associated to input and output messages in the portType definition, using the WS-

Addressing extension.

It can also be noted that, because DPWS constrains the type of bindings that must be

supported by hosted services, there is little added value in the binding definition

presented above: all the information can be derived from previous messages and

portTypes definitions. However, in order to perform correctly, the DC toolkit code

generation tools require the binding to be completely defined.

Advanced use:

This section has given an example of WSDL definitions using the SOAP 1.2 over HTTP

binding, in compliance with the DPWS requirements. The DC toolkit also supports the

use of alternative WSDL authoring styles, including RPC mode and WS-I Basic Profile

1.1.

CODE GENERATION
A service implementation relies on code generated from the service WSDL document

for the translation of incoming requests into service function invocations, and for the

translation of the functions results into response messages.

The DC toolkit provides two code generation tools derived from those available in the

gSOAP open-source product. These tools have been modified to support DPWS

extensions such as WS-Addressing and WS-Eventing:

DPWS Core 2.1 User Guide Page 28

 wsdl2h: this tool can be used to translate WSDL and XML Schema files into

annotated header files containing gSOAP-specific annotations.

 soapcpp2: this tool takes as input a gSOAP annotated header file and generates

several C files, containing the skeletons, the stubs and the marshalling code.

WSDL2H

The wsdl2h tool takes a single WSDL file (or URL) as input and translates it into a

single annotated header file, including in the same output file information gathered

from imported WSDL and XML schema documents. A typical invocation of the

command-line tool is shown below:

wsdl2h –c –o example.gsoap -t typemap.dat example.wsdl

In the above example:

 The –c option is used for generating annotated header files for pure C code (and

not C++).

 The –o option specifies the name of the output file. In the DC toolkit samples, the

convention is to use the .gsoap extension to identify gSOAP annotated header

files. gSOAP normally uses a .h extension for these files.

 The –t option specifies the name of an optional type mapping file, often called

typemap.dat. When this option is not explicitly specified, the tool looks for a file

with that name in the current directory. If none is present, default values are used.

One role of the type mapping file is to declare namespace prefixes to be used in

generated structures and functions names. By default, the tool generates ns1, ns2…

prefixes, but this can be overridden to use more meaningful prefixes.

The generated annotated header file contains:

 Type and structure definitions generated from XML Schema (XSD) types: each

simple type definition becomes a reference to a native C type or enumeration;

each complex type definition becomes a C struct in the generated file. The name

of the type is derived from the XSD type name: an XSD type called ns:type

(where ns is the prefix for the XML Schema target namespace) becomes a C type

called ns__type (note the double underscore).

 Operation declarations generated from WSDL binding declarations: each

operation appearing in a binding becomes a function prototype. The name of the

prototype is derived from the operation name and the prefix of the WSDL target

namespace. An operation called oper becomes a function called ns__oper when

using RPC style, and __ns__oper when using document style (where ns is the

prefix for the WSDL target namespace).

Message parts in the WSDL documents are mapped to parameters in the function

prototypes:

 Document/literal operations can have one or two parameters: the last parameter

represents the response message, which must be of type void in case of one-way

operations or of type pointer to a struct representing the type of the message

part element in case of request/response operations. The parameter representing

the request must be omitted when the request uses an empty message, or be of

type pointer to a struct representing the type of the message part element

otherwise.

DPWS Core 2.1 User Guide Page 29

 RPC/literal operations follow the same rules, except that each input message part

is individually mapped on a single parameter using a type corresponding to the

message part type.

The following table summarizes the main mapping between XML/WSDL entities and C

entities appearing in the annotated header file. Note that these entities are not

directly used in C code: a second code generation step is required to produce code

that can be compiled.

XML/WSDL entity XML QName C entity and name Comment

XSD simple type ns:stype typedef: ns__stype
enum: ns__stype

XSD complex type ns:ctype
inside ns:elem

struct: ns__ctype
struct: _ns__elem

Global type
Internal type

XSD element ns:elem struct: ns__elem Normally not used

doc/lit operation ns:oper int __ns__oper(in, void)

int __ns__oper(in, out)
int __ns__oper(out)

One-way or
notification
Request/response

rpc/lit operation ns:oper int ns__oper(p1, …, pn,
 void)
int ns__oper(p1, …, pn,
 out)
int ns__oper(out)

One-way or
notification
Request/response

Advanced use:

The type mapping file can also define a mapping of XML Schema types to specific C

types, instead of using the default mapping. Such a mapping is required for instance

when using MTOM encoding for transporting binary data. See “Mapping XML Schema

types to specific C types” for more details.

Warning: the wsdl2h tool uses the GNU Public License (GPL), which means that code

generated with this tool cannot be included in software not distributed as open source

under the same license.

SOAPCPP2

The second phase of code generation uses the soapcpp2 stub and skeleton code

generator. The tool takes as input a gSOAP annotated header file, and produces

several C header and source files. A typical invocation of the command-line tool is

shown below:

soapcpp2 –2ucn –pws –d gen example.gsoap

In the above example:

 The -2 option specifies that the generated code should use SOAP 1.2 (and not

SOAP 1.1).

 The –u option specifies that DPWS extensions should be used.

 The –n and –p options enable the support for multiple services in the stack. The

prefix specified after the –p option (ws in this example) is used by the generator

as a prefix for the name of generated files. When not specified, the default

prefix used by the tool is soap.

 The –d option specifies the output directory for generated files.

DPWS Core 2.1 User Guide Page 30

Several C header and source files are generated, using the specified prefix (ws in this

example):

 wsC.c and wsH.h contain marshalling/demarshalling code;

 wsStub.h contains stub & skeleton declarations (derived from the information of the

annotated header file), including all required type declarations and function

prototypes.

 ws.nsmap contains prefix and namespace definitions for the web service.

 wsServer.c contains the skeleton code that handles SOAP and DPWS processing

and calls the user service implementation. It also contains stubs for sending event

notifications.

 wsClient.c contains the stub code.

 wsHandler.c contains the code for handling asynchronous messages received on the

client side that may have been initiated by a server replying to a specific

endpoint or sending event notifications. It is a kind of skeleton specific to DPWS.

 wsServerLib.c, wsClientLib.c and wsHandlerLib.c are versions of stubs & skeletons

that include a „static‟ version of the marshalling/demarshalling code. They are

useful when deploying multiple web services in a single program.

When implementing a service on the server side, only the following files are required:

wsC.c, wsH.h, wsStub.h, ws.nsmap, wsServer.c and wsServerLib.c.

Advanced use:

Instead of using a WSDL document as the input to the code generation procedure, it is

also possible to directly edit and use the gSOAP annotated header file as input. This

approach provides greater flexibility to control the code generation. See “Editing the

gSOAP annotated header file” for more details.

SERVICE IMPLEMENTATION
Once the service skeleton is generated, it is necessary to implement the service

functions that are called by the skeleton. The reunion of the generated code and the

service functions represent the complete service implementation, also called a service

class in the following sections.

One specific aspect of services developed with the DC toolkit is their support for

events, as detailed in this section.

IMPLEMENTATION OF SERVICE FUNCTIONS

The generated code on the server side relies on service functions that must be

implemented by the service developer for the generated skeletons to work. Each

operation declared in a gSOAP annotated header file is associated with a generated

skeleton function that invokes a service function. The name and parameters of the

service function are derived from the operation declaration:

 The name of the function is the name of the operation (including the double

underscore in case of doc/literal operations).

 The first parameter is a pointer to a struct dpws, passed to the service function

by the DC runtime environment to provide access to the execution context of the

current Web Service request.

 The remaining parameters are the same as those declared in the annotated

header file, except for void parameters that are dropped.

The following is an example of a one-way service function declaration invoked by a

generated skeleton:

DPWS Core 2.1 User Guide Page 31

int __wsh__LaunchCycle(

 struct dpws*,

 struct _wsh__LaunchCycle *wsh__LaunchCycle);

The implementation of service functions is completely application-dependent, but a few

rules and guidelines apply:

 Return value: the service function must return an int value. This value must be

DPWS_OK (i.e. 0) when the function returns normally. Because one-way operations

do not return faults, their service functions should usually return DPWS_OK.

 Fault: when a processing error occurs in the service function implementing a

request/response operation, the service should return a SOAP fault to the sender.

This is notified to the DC runtime by calling the dpws_fault function and

returning its return value as error code from the service function. Note that the

dpws_fault function, like many other DC runtime functions, takes the struct

dpws pointer as first parameter.

 Response message allocation: in case of request/response operations, the service

function is responsible for constructing the response object that will be marshalled

into the SOAP response message by the DC runtime. When this object is complex,

dynamic allocation may be required. Because the allocated data must be

available to the generated skeleton after the service function returns, and

because control is not explicitly returned to application code after the service

function returns, the DC runtime provides a specific memory allocator function,

dpws_malloc. Memory allocated by this function is managed by the DC runtime,

and is freed after each request is processed using the dpws_end function (the use

of the dpws_end function is further discussed in the server architecture section).

 Access to application data: when developing products featuring multiple devices

and services, it is often required to associate specific application data to a device

or a service. This association is performed at deployment and configuration time

(see relevant section for details). The DC runtime provides functions, called

dpws_get_device_user_data, dpws_get_service_class_user_data

and dpws_get_endpoint_user_data respectively, to retrieve within a service

function the application data associated to the device, service class or service to

which the current request has been directed.

Advanced use:

In addition to the use of generated skeletons, the DC toolkit also provides support for

generic message processing functions. Instead of using generated C structs to handle

the XML content of the SOAP messages, these functions use a streaming XML API to

access to this content. See “Generic invocation” for details.

USE OF EVENTS

One of the specific aspects of DPWS development is the use of events to support

asynchronous notifications from a service to one or several subscribers. Event

notifications are one-way messages sent by an event source to registered event sinks.

Unlike standard one-way message interactions, event notifications do not require the

message sender to know in advance the message receiver endpoint and its WSDL

description. Rather, it is the event source (message sender) that publishes the event

description in its WSDL document, and let interested receivers subscribe to the event.

This kind of publish/subscribe architecture promotes more dynamic and flexible links

between message senders and receivers.

In order to act as an event source, a service implementation must:

DPWS Core 2.1 User Guide Page 32

 Expose a subscribe operation on its endpoints, to allow subscribers to declare

their interest: this is entirely taken care of by the DC runtime and the generated

skeletons for a service marked as event source.

 Generate event notifications: this requires the invocation of generated notification

functions.

Advanced use:

The DC toolkit defines configuration properties for managing subscriptions and their

life cycle on the server side. See “Advanced eventing features” for details.

GENERATED NOTIF ICATION FUNCTIONS

In addition to the skeleton functions used to dispatch incoming messages for a service,

the generated code for the server side (included in the generated wsServer.c file) also

contains stubs that can be used to send event notifications to subscribers. For each

notification (output-only) operation declared in the service annotated header file, a

corresponding dpws_notify_<operation name> function is generated (the

operation name is of the form __ns__oper for document/literal operations). The

generated function has the following parameters:

 The first parameter (dpws) is a pointer to a struct dpws that must be initialized

by the user code.

 The second parameter (event_source) is a reference to the service object that

internally represents the event source. This handle reference must be obtained at

service deployment and configuration time, as described in the deployment and

configuration section.

 The remaining parameters are the same as those declared in the annotated

header file, except for the final void parameter that is dropped. They represent

the body of the message and will be serialized into XML using the marshalling

code.

The following is an example of a generated event notification stub declaration:

int dpws_notify___wsh__CycleEnded(

 struct dpws*,

 short,

 struct _wsh__CycleEnd *);

SENDING EVENT NOTIF ICATIONS

The invocation of the event notification stubs is similar to the invocation of one-way

operation stubs on the client side, as described in the client development section. The

basic steps required to perform such an invocation involve:

 Creating and initializing a request context, i.e. a struct dpws object: this object

can be allocated statically, on the stack or on the heap. Once the object has been

allocated, it must be initialized using the dpws_client_init function.

 Invoking the notification function: this is performed as a standard function call,

passing a pointer to the initialized request context as first parameter.

 Cleaning up the request context: this is performed by calling the dpws_end

function with a pointer to the request context as parameter.

Generated stub invocation guidelines and usual pitfalls also apply to event

notification. They are further detailed in the client development section.

The following code snippet shows an example of event notification:

…

int status;

DPWS Core 2.1 User Guide Page 33

short hEventSource;

struct dpws dpws;

struct _wsh__CycleEnd cycleEnd;

…

dpws_client_init(&dpws, NULL);

cycleEnd.CycleName = "GENTLE";

…

// send an event to subscribers using the client dpws structure

status = dpws_notify___wsh__CycleEnded(&dpws, hEventSource, &cycleEnd);

if (status)

 fprintf(stderr, "Could not send 'cycle end' event\n");

dpws_end(&dpws); // free memory allocated for event message

…

Advanced use:

An event notification stub sends a separate event notification message to all active

subscribers, thus often sending more than one message during one invocation. This

makes network error handling more complex, as more than one message delivery may

fail. The DC toolkit provides a way to register a callback function to receive individual

notification of message delivery failures. See “Advanced eventing features” for

details.

SERVICE DEPLOYMENT AND DEVICE CONFIGURATION
Once services are implemented, the next step requires these services to be deployed

and attached to devices, and devices to be configured with appropriate metadata to

support the discovery and metadata exchange protocols.

The DC toolkit uses an internal structure, called the registry, to hold all the required

information about devices, service implementations (called service classes) and hosted

service endpoints. This section describes this registry structure, the object model on

which it relies to organize the information, the API functions that are provided to

create and configure registry objects, and additional bookkeeping information that

must be managed to allow the DC runtime environment to operate properly.

ROLE OF THE REGISTRY

The role of the registry is to maintain on the server side metadata information about

devices and services supporting:

 The dispatch of incoming SOAP messages to the targeted service or device, based

on the endpoint URL.

 The advertisement of devices and the retrieval of matching devices in accordance

with the WS-Discovery specification.

 The retrieval of device and service metadata in accordance with the DPWS

specification.

The DC registry also provides features that go beyond the basic DPWS requirements:

 The registry can manage multiple devices of different types, each device hosting

multiple services. This feature is useful for instance when developing DPWS

gateways that expose several field bus devices as individual DPWS devices.

 The registry can be dynamically modified while devices and services are running.

This feature is useful to support the dynamic deployment of new devices or hosted

services.

DPWS Core 2.1 User Guide Page 34

THE REGISTRY OBJECT MODEL

The registry relies on an internal object model to structure all the required information

about devices and services. This object model is exposed to the developer through the

DC API. It is organized around four main classes of runtime objects:

 ServiceClass: objects of this class represent service implementations and their

associated metadata.

 ServiceEndpoint: objects of this class represent service instances. A service endpoint

is always associated to a service class.

 Device: objects of this class represent device instances. A device is a kind of

service endpoint (hence the super link), and hosts a set of hosted services, which

are also represented as service endpoints.

 ServicePort: objects of this class represent addressable network endpoints (URLs),

to which SOAP messages can be sent. Service ports are associated to one service

endpoint.

In addition to those four classes, the registry also defines:

 DeviceModel: objects of this class act as prototypes for instantiating devices. Their

content is copied in the device instance at instance creation time. Device models

also reference a set of service classes.

 NetworkListener: objects of this class represent server endpoints listening for

incoming connection requests. This is a singleton object in the current version, only

supporting the http scheme.

The following class diagram shows the main classes and associations in the registry

object model:

ServiceClass objects have the following attributes:

 Id: a URI that identifies the service class.

 Types: a set of QNames that represent the types implemented by this ServiceClass.

Types are usually the names of the portTypes defined in the service WSDL

document.

 WSDL: a set of URI referring to WSDL documents describing this service class.

Although a single WSDL document is normally enough to describe a service class,

the DC toolkit allows the use of several documents, to support the cases where

more than one Web Service is exposed on a single network endpoint.

Id: URI

Manufacturer: LocString[]
ManufacturerURL: URI
ModelName: LocString[]

ModelNumber: String
ModelURL: URI

PresentationURL: URI

DeviceModel

Id: URI

Types: QName[]
WSDL: URI[]
DispatchFn: Function[]

FaultHandlerFn: Function
EventEndHandlerFn: Function

UserData: void*

ServiceClass

serviceClasses

*

DeviceId: URI

Scopes: URI[]
FriendlyName: LocString[]
SerialNumber: String

FirmwareVersion: String
MetadataVersion: int

UserData: void*

Device

ServiceId: URI

UserData: void*

ServiceEndpoint
super

hosted

*

Address: URI

ServicePort

ports

*

model

(copied at initialisation)

class

port: short

scheme: String

NetworkListener

listener
*

DPWS Core 2.1 User Guide Page 35

 DispatchFn: a set of callback functions that will be called by the DC runtime when

dispatching a message sent to a service which instantiates this ServiceClass. The

usual case is to use the dispatch function generated by the skeleton generator

from the service class WSDL document. User-defined functions using a generic

skeleton may also be used.

 UserData: a pointer to a user-defined object that can be used to associate

application-specific information to the ServiceClass. This data can be retrieved at

execution time in the service functions.

ServiceClass objects have two additional callback function properties, FaultHandlerFn

and EventEndHandlerFn. These properties are used on the client side when

implementing asynchronous and eventing clients. Their use is described in more details

in the relevant chapter.

ServiceEndpoint objects are associated to a ServiceClass describing their

implementation, and to a hosting Device. They have the following attributes:

 ServiceId: a URI that uniquely identifies the service instance within its hosting

device. By default, it uses the Id attribute of its ServiceClass.

 UserData: a pointer to a user-defined object that can be used to associate

application-specific information to the ServiceEndpoint. This data can be retrieved

at execution time in the service functions.

ServicePort objects are associated to a ServiceEndpoint and have the following

attribute:

 Address: a URL that represents the network address on which the service endpoint

associated to the service port is available. This URL is usually relative, as the

corresponding absolute URL is built from the server IP address and network

listener scheme (currently limited to http) and port number. When not specified, a

generated UUID is used as relative URL.

Device objects are more complex, as a device is a kind of service, and has an implicit

service class and service port associated to it. Therefore, most of the attributes

described above are applicable to device objects, with the following restrictions and

specificities:

 DispatchFn and WSDL: in the DPWS model, devices are normally only used as a

metadata resource for supporting the discovery of their hosted services. However,

in some cases, it might be necessary to associate some functional behavior to the

device endpoint. In such cases, the DispatchFn and WSDL attributes may be set on

a device as they would be on a service class. In all the other cases, they should not

be set.

 Types: a set of types representing the device functional capabilities. In the DPWS

model, device types represent the overall functional behavior, and should not

reference specific service portTypes. The exception to this rule is when a specific

service is deployed on the device endpoint (as described above). In such a case,

the service portTypes should be included in the device type set.

 ServiceId: this attribute cannot be set on a device.

 Address: this attribute represents the device transport address. This URL is usually

relative, as the corresponding absolute URL is built from the server IP address and

network listener scheme (currently limited to http) and port number. When not

specified, the device id (a UUID) is used as relative URL.

DPWS Core 2.1 User Guide Page 36

Device objects also have their own specific attributes. They can be split into two

groups: model attributes and instance attributes.

Device model attributes include:

 Manufacturer: a set of localized strings representing the device manufacturer

name in different languages. Localized strings (struct localized_string in

the API) associate a string with a language, represented by a standard language

code (e.g. en, fr…), as used by the standard xml:lang attribute.

 ManufacturerURL: the URL of the manufacturer Web site.

 ModelName: a set of localized strings representing the device model name in

different languages.

 ModelNumber: a manufacturer model reference for the device.

 ModelURL: the URL of the model Web page.

 PresentationURL: the URL of the device home page. Although it belongs to the

model attributes (in accordance with the DPWS specification), this URL is in fact

specific to the device instance. The usual practice is to use a relative URL for this

attribute, the absolute URL being then constructed from the device transport

address and the relative URL.

Those attributes can either be set directly on a device, or be set on a DeviceModel

object, in which case they will be automatically copied into each new device created

from the model.

Device instance attributes include:

 DeviceId: a URI that must be stable over time, over reboots and across network

interfaces. The usual practice is to use a UUID for this attribute. When not

specified, the UUID is generated from one of the platform network interface MAC

addresses and additional information specified at device creation time.

 Scopes: a set of URIs representing application-specific logical grouping. Scopes

can be used for instance to represent a geographical location, a position in a

network topology, management information…

 FriendlyName: a set of localized strings representing the device friendly name in

different languages. Friendly names can be used for instance as display names in

network explorers.

 SerialNumber: a string representing the device serial number.

 FirmwareVersion: a string representing the device firmware version.

 MetadataVersion: an unsigned integer representing the current version of the

device metadata. This number should be incremented each time the device

metadata information is modified. Further details on the management of this

attribute are given in a following section.

 UserData: a pointer to a user-defined object that can be used to associate

application-specific information to the device. This data can be retrieved at

execution time in the service functions.

DEVICES AND HOSTED SERVICES CONFIGURATION

The configuration of the devices and hosted services in the registry is done through the

DC configuration API which includes:

 Creation functions for all registry objects.

 Attribute setters and getters for registry objects.

 Device enabling and disabling functions.

DPWS Core 2.1 User Guide Page 37

All registry objects are exposed to the developer through handle references,

represented as short integers, which are returned by the creation functions. This

approach allows the DC runtime to internally maintain reference counters on all

registry objects, thus supporting dynamic changes to the registry while running. The API

provides a few functions for handle management, including a

dpws_release_handle function that should be called on handle references when

not used anymore by the application code.

The DC API provides the following generic attribute setters and getters, which always

take a handle reference as first parameter and an attribute key as second parameter:

 dpws_set_ptr_att and dpws_set_int_att: sets a pointer (resp. int) value in

a mono-valued attribute.

 dpws_add_ptr_att: adds a pointer value to a multi-valued attribute. There is

no way to remove or clear a multi-valued attribute, but it is possible to use the

dpws_set_ptr_att function to reinitialize the attribute with a single value.

 dpws_get_ptr_att and dpws_get_int_att: gets a pointer (resp. int) value

from a mono-valued attribute.

 dpws_get_att_count and dpws_get_ptr_att_item: these two functions

can be used to retrieve the number of entries in a multi-valued attribute and

retrieve individual values.

The setter functions always make a copy of the value to be set. They are also

available as macros, using the same name in uppercase. Setter and getter functions

may return an error code if the handle reference is invalid, if the specified attribute

key does not correspond to a valid attribute for the specified object, or if the

specified attribute value is invalid.

The usual creation order for registry objects is the following:

 Creation of service classes: this is performed by calling the

dpws_create_service_class function. Service classes must be configured

after creation using the attribute setters, as shown in the code snippet below:

hServClass = dpws_create_service_class();

// Configure the service class attributes.

DPWS_ADD_PTR_ATT(hServClass, DPWS_PTR_PREFIXED_TYPE,

 &SwitchPowerPortType);

DPWS_ADD_PTR_ATT(hServClass, DPWS_PTR_WSDL, &LightingWsdl);

DPWS_ADD_PTR_ATT(hServClass, DPWS_PTR_HANDLING_FUNCTION,

 &lit_serve_request);

DPWS_SET_STR_ATT(hServClass, DPWS_STR_ID,

 "http://www.soa4d.org/DPWS/Samples/Lights/Light1");

 Creation of device models: this is performed by calling the

dpws_create_device_model function. The use of device models is optional,

and mainly useful when developing gateways that feature several devices of the

same model. Once a device model is created, model attributes can be configured,

and specific service classes can be registered in the model, using the

dpws_register_service_class function.

 Creation of devices: this is performed by calling the dpws_create_device or

dpws_create_custom_device function. The first function takes a device model

reference as parameter and will automatically generate one hosted service and

one associated service port for each service class registered with the model. The

second function can work without a model, and will not generate default hosted

services. Both functions take as first parameter a numeric identifier, which must be

unique and which is used as input for the device UUID generation. The following

DPWS Core 2.1 User Guide Page 38

code snippet shows an example of device creation and configuration without a

device model:

hKitchenLight = dpws_create_custom_device(0, -1);

// Configure the mandatory device attributes.

DPWS_ADD_PTR_ATT(hKitchenLight, DPWS_PTR_TYPE,

 &SimpleLightType);

DPWS_SET_INT_ATT(hKitchenLight, DPWS_INT_METADATA_VERSION, 1);

ls.s = "Kitchen light";

DPWS_SET_STR_ATT(hKitchenLight, DPWS_PTR_FRIENDLY_NAME, &ls);

ls.s = "BrightBulb";

DPWS_SET_STR_ATT(hKitchenLight, DPWS_PTR_MODEL_NAME, &ls);

ls.s = "Electrical SA";

DPWS_SET_STR_ATT(hKitchenLight, DPWS_PTR_MANUFACTURER, &ls);

// Configure the optional device attributes.

DPWS_ADD_STR_ATT(hKitchenLight, DPWS_STR_SCOPE, diversified_scope);

DPWS_SET_STR_ATT(hKitchenLight, DPWS_STR_FIRMWARE_VERSION, "1.0");

DPWS_SET_STR_ATT(hKitchenLight, DPWS_STR_SERIAL_NUMBER, "56080001");

DPWS_SET_STR_ATT(hKitchenLight, DPWS_STR_MODEL_NUMBER, "1.0");

DPWS_SET_STR_ATT(hKitchenLight, DPWS_STR_MODEL_URL,

 "http://www.electrical.com/BrightBulb.html");

DPWS_SET_STR_ATT(hKitchenLight, DPWS_STR_PRESENTATION_URL,

 "LightsOverview.html");

DPWS_SET_STR_ATT(hKitchenLight, DPWS_STR_MANUFACTURER_URL,

 "http://www.electrical.com");

// User data that will be accessible in the service implementation

DPWS_SET_PTR_ATT(hKitchenLight, DPWS_PTR_USER_DATA, &simpleLightState);

 Creation of services: in the case where the device is created without hosted

services (as in the example above), hosted services must be explicitly created and

attached to the device. This is done using the dpws_create_hosted_service

function, which takes as parameters a device reference and a service class

reference. The following code snippet shows an example of service creation.

There is no specific configuration required, as the service will use the service class

Id as service Id:

hSPServ = dpws_create_hosted_service(hKitchenLight, hServClass);

 Creation of service ports: the last step in the registry configuration is the creation

of service ports for all configured services. Service ports are created using the

dpws_create_service_port function, and then associated to a service using the

dpws_bind_service function. The following code snippet shows an example of

service port creation, configuration and binding:

hSPServPort = dpws_create_service_port();

DPWS_SET_STR_ATT(hSPServPort, DPWS_STR_ADDRESS, "SwitchPowerService");

dpws_bind_service(hSPServ, hSPServPort);

All object creation functions return an invalid handle (-1) if an error occurred.

Once devices and their hosted services are created and configured, they can be

published on the network by calling the dpws_enable_device function. When using

a static configuration, as described in this section, the role of this function is to schedule

the WS-Discovery Hello messages before starting the main server loop. These

messages will then be sent at server start time.

status = dpws_enable_device(hKitchenLight);

… // Error handling code

dpws_release_handle(hKitchenLight);

Once a device is enabled, its handle ownership is transferred to the registry, and the

handle can be safely released by the application.

DPWS Core 2.1 User Guide Page 39

Advanced use:

This section has introduced a static configuration mechanism for initializing devices and

hosted services. The DC toolkit provides more advanced mechanisms for managing the

registry, including:

 The use of an XML configuration file. See “XML configuration” for details.

 An API for dynamically changing the contents of the registry while running. See

“Dynamic registry modification API” for details.

 A built-in management service for dynamically changing the contents of the

registry at runtime. See “Dynamic deployment” for details.

PERS ISTENT INFORMATION MANAGEMENT

One of the tricky aspects of the DC runtime configuration is the management of

persistent state information that is required for the proper implementation of the WS-

Discovery and DPWS protocols:

 The device identifier must be unique and stable over reboots.

 Discovery messages sent by devices must include a sequence number that must be

incremented at each reboot.

 The metadata version associated to each device must be incremented each time

the device or hosted service metadata is modified.

 Some device attributes are used to “personalize” a given device implementation

for a specific device. Such information cannot be stored in the implementation

code and requires specific external storage.

The following table shows the set of device and hosted service attributes that are

controlled by the device metadata version and require a metadata version increment

each time they change. It also distinguishes device attributes that are attached to the

implementation and those that are specific to a given device instance.

Device attributes Device personalization
attributes

Hosted service attributes

Types
Manufacturer
ManufacturerURL
ModelName
ModelNumber
ModelURL
PresentationURL
FirmwareVersion

DeviceId
Scopes
FriendlyName
SerialNumber

Address
Types
ServiceId
WSDL

Although it does not explicitly appear in the table, a change to the set of services

hosted by a device also requires a metadata version increment.

Warning: some changes in a device state may occur spontaneously and require a

metadata version increment:

 A hosted service address normally uses a HTTP URL that contains the IP address of

its hosting device: as this address may change upon reboot or renewal of a DHCP

lease, the hosted service address may change as well.

 When using the default configuration mechanism provided by the DC API, each

hosted service is associated to a service port which uses a generated UUID as

relative address. This will therefore change upon each reboot.

The basic configuration API of the DC toolkit only provides limited support for

managing persistent information:

DPWS Core 2.1 User Guide Page 40

 The boot sequence number must be explicitly set when initializing the DC stack. It

is the responsibility of the application to store and increment it at each reboot.

When running the DC stack on a platform that has access to calendar time, the

number of elapsed seconds since the epoch can be used as boot sequence

number.

 The metadata version of a device must be stored and incremented by the

application each time the device metadata is changed. When the metadata

changes at each reboot (due for instance to a change of IP address), the boot

sequence number may be used as metadata version. Note however that such a

dynamic behavior is not recommended: frequent changes in metadata induce

additional metadata requests from clients, which often use a caching mechanism

for optimizing their access to metadata.

 The device identifier may be automatically generated from the MAC address of

one of the device network interfaces, thus ensuring uniqueness and stability. The

rest of the “personalization” attributes (Scopes, FriendlyName and SerialNumber)

must be stored and managed by the application.

Advanced use:

The XML configuration file can be used to store all the required persistent information.

See “Registry configuration format” for details.

IMPLEMENTING THE SERVER ARCHITECTURE
The last step in the development of a device and its hosted services is the

implementation of the server behavior, i.e. the loop that is waiting for incoming

requests to process them.

The following diagram shows the main sequence of operations that must be executed

in the device implementation code to set up the server. In this figure, the second step

(registry configuration) has already been extensively discussed in the previous section.

The three other steps are further detailed in this section.

STACK INIT IAL IZAT ION

The first DC API function that must be called in all applications is one of the stack

initialization functions, dpws_init, dpws_init6 or dpws_init_ex. The first two

functions initialize the stack for the IPv4 or IPv6 protocols respectively, using one of the

available network interfaces.

•HTTP listener

•Discovery listener

•Accept incoming requests

•Process requests

•Exit conditions

DPWS Core 2.1 User Guide Page 41

Advanced use:

The dpws_init_ex can be used to configure the stack for using both IPv4 and IPv6

at the same time and more than one network interface. See “Multiple network

interfaces and IP protocols” for details.

Warning: the selection of the default interface when using the dpws_init or

dpws_init6 function can lead to unexpected behavior on systems featuring several

interfaces (e.g. a PC under Windows). In such a case, one should either deactivate all

the unused interfaces, or use the dpws_init_ex with the appropriate filter to select

the right interface.

Calling a stack initialization function after one of them has already been called has no

effect.

Once the stack is initialized, it is necessary to configure global DC registry parameters:

 Boot sequence: see discussion of this parameter in the previous section.

 HTTP port number: this is the port of the network listener on which incoming Web

Services requests will be received. It defaults to 80 (standard HTTP port).

Warning: the above parameters are used during device configuration, so must be set

before the registry configuration phase.

Global parameters configuration is performed by using the attribute setter functions

described previously on a special predefined handle reference.

The following code snippet shows an example of stack initialization:

status = dpws_init();

… // Error handling code

DPWS_SET_INT_ATT(DC_REGISTRY_HANDLE, DPWS_INT_HTTP_PORT, port);

DPWS_SET_INT_ATT(DC_REGISTRY_HANDLE, DPWS_INT_BOOT_SEQ, bootSeq);

CONFIGURING THE SERVER AND ITS L ISTENERS

This step is performed after the registry configuration. It is used to configure and

create the server objects that listen for incoming discovery and Web Services

messages.

The DC API provides two functions for initializing the server, dpws_server_init

and dpws_server_init_ex. Both functions take a struct dpws pointer as first

parameter, and configure it for server operations. Other server configuration

parameters, available when using the dpws_server_init_ex function, include:

 HTTP server activation flag: this flag controls whether the internal HTTP server of

the DC toolkit should be used or not. It is set by default.

 HTTP server backlog: this parameter controls the size of the HTTP socket backlog.

 HTTP server TCP bind flags: these flags are passed to the HTTP socket upon

creation.

 Discovery server activation: This flag controls whether the discovery listener should

be started. It is set by default.

The following code snippet shows an example of server initialization:

status = dpws_server_init(&dpws, NULL);

… // Error handling code

DPWS Core 2.1 User Guide Page 42

Advanced use:

Additional server configuration mechanisms are available for customizing the DC

server behavior once the server has been initialized. These optional features include:

 Support of connection keep-alive on the server side. See “Connection keep-alive”

for details.

 Support for MTOM attachments. See “MTOM support” for details.

 Support for WS-I Basic Profile 1.1. See “Basic Profile 1.1 support” for details.

 Use of an external Web server in replacement to the internal DC Web server.

See “External Web server integration” for details.

IMPLEMENTING THE SERVER LOOP

The server normally runs inside an infinite loop, repeatedly performing the following

actions:

 Accepting new requests: this is a blocking call that waits until a new request is

available on either the discovery listener or the HTTP listener. This function sets up

a request context for processing the request.

 Processing the current request using the request context previously set up.

 Cleaning up the request context.

The DC toolkit API supports the execution of the above loop in both mono-threaded

and multi-threaded mode.

In mono-threaded mode, the dpws_accept must be used to wait for incoming

requests. This function takes as single parameter the dpws struct pointer that has

previously been configured with the dws_server_init call. Upon successful return of

the function, the dpws struct pointer also represents the request context of the

incoming request. This pointer can then be used to process the request, by calling the

dpws_serve function. This function is responsible for dispatching the request and

invoking the appropriate skeleton, which ultimately calls the user-defined service

function with the request context as parameter. The request context must be cleaned

up after processing by calling the dpws_end function with the request context as

argument. This function frees all resources and memory used for processing the

request. After clean up, the dpws struct pointer can still be used by the next

dpws_accept call.

The following code snippet shows an example of a mono-threaded server loop:

while (TRUE) {

 status = dpws_accept(&dpws);

… // Error handling code

 status = dpws_serve(&dpws);

… // Error handling code

 dpws_end(&dpws); // frees transient message memory.

}

In multi-threaded mode, each request is processed in a separate thread, using an

independent request context, while the request listener runs in the main server thread,

using the dpws_accept_thr function to wait for incoming requests. This function takes

two dpws struct pointers as parameters: the first one represents the server context

(previously initialized using dpws_server_init), the second one represents the

request context to be initialized by the function call. Upon successful return of the

function, the request context can be used in a separate thread as a parameter to the

dpws_serve and dpws_end functions.

DPWS Core 2.1 User Guide Page 43

Warning: in multi-threaded mode, it is absolutely mandatory that each thread uses a

separate dpws struct pointer as request context, as the internal fields of this struct

contain request-specific data and are not protected against race conditions.

An example of a simple multi-threaded server is given in the package samples.

EXIT ING THE SERVER LOOP

The above discussion has introduced the server loop as an infinite loop. However, it is

sometimes necessary to exit the server loop in an orderly manner. The DC toolkit

provides the following mechanism for such a case:

 The dpws_stop_server and dpws_stop_server_no_wait functions can be

used to asynchronously interrupt the dpws_accept (or dpws_accept_thr)

function.

 The status code returned by the dpws_accept function can be tested for the

specific interrupt code, and the loop exited with no error, as shown in the code

snippet below.

while (TRUE) {

 status = dpws_accept(&dpws);

 if (status == DPWS_ERR_SERVER_STOPPED) {

 break; // Exit loop

 } else if (status) {

 … // Error handling code

 }

 status = dpws_serve(&dpws);

… // Error handling code

 dpws_end(&dpws); // frees transient message memory.

}

After the server loop is exited, it is possible to clean up the server configuration by

calling the dpws_server_shutdown function. The complete DC stack can also be shut

down, freeing all resources, by calling the dpws_shutdown function.

COMPILING AND LINKING
The DC runtime environment is provided as a set of static or shared libraries that must

be linked with both the generated code for the implemented Web services and the

application code to produce an executable server.

THE DPWS CORE L IBRARIES

The following table shows the names of the static and shared libraries that implement

the DC runtime. The names are given for the Windows platform, but equivalent ones

are defined for the Linux platform.

Static libraries Shared libraries

al.lib
common.lib
dcpl.lib
dpwslib.lib

dcruntime.dll

All the necessary functions and structs declarations are provided in the

dc/dc_Dpws.h header file, which must be included in all application files using the

DC toolkit API.

DPWS Core 2.1 User Guide Page 44

Advanced use:

The DC toolkit provides additional libraries implementing advanced features. These

libraries are described in their respective sections of the “Advanced features” chapter.

GENERATED SERVER AND APPL ICATION F I LES

The set of files that must be compiled and linked with the DC runtime libraries include:

 For each Web Service called ws, the generated file called wsServerLib.c. This file

includes both the skeleton code (wsServer.c) and the marshalling/unmarshalling

code (wsC.c).

 For each Web Service called ws, the file containing the implementation of the

service functions. This file should also include the ws.nsmap generated file (note

that this file contains global variable declarations and should therefore be

included only once in an application).

 The file(s) containing the registry configuration code and the implementation of the

server main loop.

Examples of projects for both the Windows and the Linux platforms are provided in

the package samples.

Warning: forgetting to include the ws.nsmap file or including it more than once is a

usual source of link errors when getting started with the DC toolkit.

DPWS Core 2.1 User Guide Page 45

PURE CLIENT DEVELOPMENT

DEVELOPMENT PROCESS OVERVIEW
The following figure highlights the main steps in the development of a pure client using

the DC toolkit.

The client development process is much simpler than the server development process

and requires much less implementation work.

The process starts from a WSDL document describing the service to be invoked. It is

similar to a standard Web Services client development process, extended with the use

of discovery mechanisms.

The main steps of this process are further detailed in the following sections.

CODE GENERATION
Generating the code for a Web Service client involves:

 Retrieving the service WSDL file;

 Generating code from the WSDL file, including the service stubs and the

marshalling/unmarshalling code.

CODE GENERATION TOOLS

The code generation for the client uses the wsdl2h and soapcpp2 tools already

introduced for server-side code generation.

The following commands are required for generating the client code from a WSDL

document:

wsdl2h –c –o example.gsoap -t typemap.dat example.wsdl

soapcpp2 –2ucn –pws –d gen example.gsoap

These commands and options are the same as those used for the server-side code

generation, which are detailed in “Code generation”. Only the following generated

files are required when implementing a service client: wsC.c, wsH.h, wsStub.h, ws.nsmap,

wsClient.c and wsClientLib.c.

GENERATED STUBS

The generated code for the client side (included in the generated wsClient.c file)

contains the service stubs that can be used to invoke service operations. Two types of

stubs are generated, depending on the type of operation.

For each one-way (input-only) operation declared in the service annotated header

file, a corresponding dpws_send_<operation name> function is generated (the

•Service stubs generation

•Stack and request context initialization

•Discovering devices and services

• Invoking the services

•Request context cleanup

DPWS Core 2.1 User Guide Page 46

operation name is of the form __ns__oper for document/literal operations). The

generated function has the following parameters:

 The first parameter (dpws) is a pointer to a struct dpws that must be initialized

by the user code.

 The second parameter (to) is a pointer to a struct wsa_endpoint_ref that

represents the destination of the message. This endpoint reference usually contains

the network address (i.e. URL) of the invoked service for a hosted service, but can

also contain the logical address of a DPWS device when the invoked service is

exposed by the device endpoint.

 The remaining parameters are the same as those declared in the annotated

header file, except for the final void parameter that is dropped. They represent

the body of the message and will be serialized into XML using the marshalling

code.

The following is an example of a generated one-way stub declaration:

int dpws_send___wsh__LaunchCycle(

 struct dpws*,

 struct wsa_endpoint_ref*,

 struct _wsh__LaunchCycle *wsh__LaunchCycle);

For each request/response (input-output) operation declared in the service annotated

header file, a corresponding dpws_call_<operation name> function is generated.

The generated function has the following parameters:

 The first parameter (dpws) is a pointer to a struct dpws that must be initialized

by the user code.

 The second parameter (to) is a pointer to a struct wsa_endpoint_ref that

represents the destination of the message. It follows the same rules as those

described for one-way operations.

 The third parameter (replyTo) is another pointer to a struct

wsa_endpoint_ref that represents the network address to which the response

must be sent.

 The remaining parameters up to the last one are the same as those declared in

the annotated header file. They represent the body of the request and will be

serialized into XML using the marshalling code.

 The last parameter is the same as the last parameter declared in the annotated

header file. It is an output parameter that represents the body of the response

message.

The following is an example of a generated request/response stub declaration:

int dpws_call___wsh__GetCycleStatus(

 struct dpws*,

 struct wsa_endpoint_ref*,

 struct wsa_endpoint_ref*,

 struct _wsh__CycleStatus *wsh__CycleStatus);

CLIENT IMPLEMENTATION
The four main steps required for invoking a service from a client are:

 Initialization of the DC runtime environment and of the request context.

 Discovery of the devices and services.

 Invocation of the discovered services.

 Request context clean up.

DPWS Core 2.1 User Guide Page 47

CL IENT-SIDE INIT IAL IZAT ION

As for the server side, the first DC API function that must be called in client applications

is one of the stack initialization functions, dpws_init, dpws_init6 or

dpws_init_ex. The first two functions initialize the stack for the IPv4 or IPv6

protocols respectively, using one of the available network interfaces.

Advanced use:

The dpws_init_ex can be used to configure the stack for using both IPv4 and IPv6

at the same time and more than one network interface. See “Multiple network

interfaces and IP protocols” for details.

Warning: the selection of the default interface when using the dpws_init or

dpws_init6 function can lead to unexpected behavior on systems featuring several

interfaces (e.g. a PC under Windows). In such a case, one should either deactivate all

the unused interfaces, or use the dpws_init_ex with the appropriate filter to select

the right interface.

The next step requires the creation and initialization of a request context, i.e. a

struct dpws object, which will be passed to all API and generated functions that

require network access: this object can be allocated statically, on the stack or on the

heap. Once the object has been allocated, it must be initialized using the

dpws_client_init function.

Warning: although it is possible to allocate the struct dpws object on the stack, this

may create problems in small embedded devices, as the object holds several large

buffers (adjustable at compile time when building the DC runtime libraries) and can

therefore exceeds the allocated stack space.

Advanced use:

The DC toolkit provides additional request context configuration mechanisms for

customizing the stack behavior. These optional features include:

 Support of keep-alive connections on the client side through the use of a

connection pool. See “Connection keep-alive” for details.

 Support for MTOM attachments. See “MTOM support” for details.

 Support for WS-I Basic Profile 1.1. See “Basic Profile 1.1 support” for details.

DEVICES AND SERVICES DISCOVERY AND METADATA ACCESS

The DC runtime environment provides an API allowing clients to discover and retrieve

metadata information about devices and hosted services available on a local network.

This API is based upon the set of discovery and metadata transfer messages defined

by the WS-Discovery, WS-MetadataExchange and DPWS specifications. In order to

limit the number of message exchanges over the network, the DC runtime uses a cache

mechanism to store discovery and metadata query results.

The DC cache has the following characteristics:

 The cache manages proxies for both devices and services: these proxies are

exposed to the developer through proxy handle references, represented as

short integers. This approach allows the DC runtime to internally maintain

reference counters on all cache proxies, thus supporting asynchronous changes to

the cache induced by its dynamic nature. A number of API functions are provided

DPWS Core 2.1 User Guide Page 48

to manage proxies and their references, including the dpws_pin_proxy and

dpws_release_proxy functions, which respectively increment and decrement a

proxy reference counter. A proxy with a reference counter equal to zero can be

discarded at any time by the cache.

 All discovery query results go through the cache before being returned to the user:

while the API provides a mechanism to choose whether querying the cache first or

directly querying the network, query results are always used to update the cache

and create proxies before being returned.

 When connected to a discovery listener, the cache is asynchronously and

dynamically updated upon reception of Hello and Bye messages. It is not the case

in pure client scenarios, but it is in peer-to-peer or asynchronous client scenarios,

as described in the following chapters. Because of this asynchronous update

mechanism, a proxy may become invalid while still in use by the application. An

invalid proxy will however not be discarded by the cache while its reference

counter is positive.

 The cache does not store some of the informative metadata for devices: only

device discovery information (types, scopes, transport addresses and metadata

version) and hosted services information (types, service ids and addresses) are

maintained in the cache. Device model and instance information, as well as hosted

services WSDL information are retrieved from the network upon request.

The following diagram shows a model of the main objects stored in the cache.

Advanced use:

The cache API provides some advanced configuration features supporting:

 The definition of callback functions called upon asynchronous modification of the

cache through Hello and Bye messages. See “Lifecycle callbacks” for details.

 The definition of cache size control mechanisms, based on filters or maximum size.

See “Cache content control” for details.

The DC API provides three different ways to discover devices:

 Using types and scopes: the dpws_lookup and dpws_lookup_ex functions can

be used to retrieve a given number of devices matching the set of types

(expressed as expanded QNames) and scopes provided as parameters. When

not enough matching results are available in the cache, these functions generate

WS-Discovery Probe messages to perform their queries. Both functions return an

array of device proxy references, together with the array size. When no devices

match the query, the array is empty and its size equal to zero. Because the

underlying Probe messages use a multicast protocol, a timeout is used to limit the

interval during which ProbeMatches messages are expected. The

Types: QName[]

Scopes: URI[]
Addresses: URI[]
MetadataVersion: int

ServiceId: URI

Types: QName[]

ServiceProxy

hosted

*

Address: URI

EndpointReference

EPR

*

EPR

DeviceProxy

DPWS Core 2.1 User Guide Page 49

dpws_lookup_ex function supports more flexible filters, as well as a user-

defined timeout and a mechanism to bypass the cache.

 Using a device logical id (UUID): the dpws_lookup_by_id function can be used

to retrieve a device based on its logical id. When the device is not in the cache,

this function generates WS-Discovery Resolve messages to perform its query. Here

also, a timeout is used for the reception of the ResolveMatches message. This

function returns a device proxy reference, or an invalid reference (-1) if no

matching device is found.

 Using a device transport address: the dpws_probe_address or

dpws_probe_address_ex functions can be used to retrieve a device based on

its transport address (which should be an HTTP URL), also checking that it has the

expected types and scopes. When no matching device is in the cache, this function

generates a WS-Discovery DirectedProbe message (using HTTP) to perform its

query. This function returns a device proxy reference, or an invalid reference (-1)

if no matching device is found.

All these discovery functions take as first parameter a pointer to the previously

initialized request context. This context is used to store transient and dynamically

allocated data while sending and receiving messages, but also to maintain the list of

returned proxy references. All returned proxies have their reference count

automatically incremented, and are released only after the next call to the dpws_end

function. When the application still needs to use a proxy after a call to dpws_end, it

should explicitly increment the proxy reference counter by calling dpws_pin_proxy.

Warning: some of the discovery functions described above call the dpws_end function

internally. Therefore, proxies returned by previous calls should be considered released

after a new call unless explicitly pinned.

The following code snippet shows an example of use of the dpws_lookup function:

status = dpws_init();

… // Error handling

status = dpws_client_init(dpws, NULL);

… // Error handling

nb_devices = 3; // Max number of devices

device_proxies = dpws_lookup(dpws,

 "http://www.soa4d.org/DPWS/Samples/Lights",

 "SimpleLight",

 "urn:myScope",

 &nb_devices);

if (nb_devices < 1) {

… // No device found

}

device_proxy = device_proxies[0];

status = dpws_pin_proxy(device_proxy);

… // Error handling

dpws_end(dpws);

Once a device proxy has been retrieved, it is possible to obtain the device hosted

services from the proxy:

 Retrieving hosted services by type: hosted services for a device can be retrieved

using the dpws_get_services function. This function takes as parameters a

device proxy and an optional type (as an expanded QName), and returns an

array of matching service proxies, along with the array size.

 Retrieving hosted services by id: a named hosted service for a device can be

retrieved using the dpws_get_service_by_id function. This function takes as

parameters a device proxy and a service id, and returns a service proxy

reference, or an invalid reference (-1) if no matching service is found.

DPWS Core 2.1 User Guide Page 50

Both functions take as first parameter a pointer to the previously initialized request

context. The rules for the management of the returned service proxy references are

the same as those exposed for the device proxies.

The following code snippet shows an example of use of the dpws_get_services

function. It assumes that a device proxy has already been obtained:

nb_services = 1; // Max number of services

service_proxies = dpws_get_services(dpws, device_proxy,

 "http://www.soa4d.org/DPWS/Samples/Lights",

 "SwitchPower",

 &nb_services);

if (nb_services != 1) {

… // No service found

}

service_proxy = service_proxies[0];

status = dpws_pin_proxy(service_proxy);

… // Error handling

dpws_end(dpws);

The DC API also provides a number of functions for accessing device and hosted

services metadata. Some of these functions directly access information stored in the

cache, while others perform a service request to retrieve the information from the

remote device or service. A detailed description of these functions is provided in the

client API section of the reference manual.

SERVICE STUB INVOCATION

In the DC toolkit, service invocation is based on WS-Addressing endpoint references

that contain the addresses of the devices and services. Endpoint references are

represented by struct wsa_endpoint_ref objects. Endpoint references can be

built manually, but in most cases will be obtained from the device and service proxies

in the cache. Two functions are provided:

 dpws_get_endpoint_refs: this function returns the list of endpoint references

associated to a proxy. In the case of a device proxy, a singleton endpoint

reference should be returned, containing as address the device logical id. In the

case of a service proxy, more than one endpoint reference may be returned.

 dpws_get_default_endpoint_ref: this function returns the default endpoint

reference associated to a proxy. In the current implementation, it is simply the first

endpoint reference in the list returned by the dpws_get_endpoint_refs

function.

Both functions take as first parameter a pointer to the previously initialized request

context, which may be NULL. When this parameter is set, the returned endpoint

references are allocated on the transient memory associated to the request context

and will be freed by the next call to dpws_end; otherwise, they are allocated on the

process heap and must be explicitly freed after use using the

dpws_endpoint_ref_free and dpws_endpoint_ref_array_free functions.

Warning: in the current version of the DC toolkit, endpoint references should either be

device endpoint references, using the device logical id as address, or service endpoint

references using HTTP URLs as address. In addition, the DC toolkit provides only limited

support for WS-Addressing reference parameters in endpoint references: only

reference parameters predefined in the DPWS specification are currently supported.

One-way operation invocations use the generated dpws_send_XXX stubs. The

parameters to those functions are:

 A pointer to the previously initialized request context.

DPWS Core 2.1 User Guide Page 51

 A pointer to the endpoint reference representing the service endpoint. It is

generally an endpoint reference obtained from a service proxy, but it can also be

obtained from a device proxy, when services are exposed on a device endpoint.

The endpoint reference may also be built manually.

 The parameter(s) representing the message body, which are operation-specific.

Although the operations are one-way, they use the HTTP protocol as underlying

transport mechanism, and the call will therefore block until it receives the expected

empty HTTP response.

Request/response operation invocations use the generated dpws_call_XXX stubs.

The parameters to those functions are:

 A pointer to the previously initialized request context.

 A pointer to the endpoint reference representing the service endpoint. It is

generally an endpoint reference obtained from a service proxy, but it can also be

obtained from a device proxy, when services are exposed on a device endpoint.

The endpoint reference may also be built manually.

 A pointer to the endpoint reference representing the address (replyTo endpoint) to

which the response must be sent. This parameter can be NULL. When specified, it

is normally built manually, as it does not generally correspond to a cached service

endpoint. When this parameter is set to NULL, the response message will be sent

synchronously to the client: this corresponds to the usual behavior of

request/response operations using SOAP over HTTP. Otherwise, the server will

send the response as a one-way message to the address specified in the endpoint

reference, by opening a new channel to the replyTo address.

 The parameter(s) representing the message body, which are operation-specific.

 The output parameter representing the message response, which is also operation-

specific. The content of this parameter is dynamically allocated on the transient

memory associated to the request context, and will be freed by the next

dpws_end call. This parameter will not be filled and may be set to NULL when

the replyTo parameter is not NULL (as the response is not received synchronously).

Request/response operations use the HTTP protocol as underlying transport mechanism,

and the call will therefore block until it receives the expected HTTP response. In the

usual case where the replyTo parameter is NULL, the HTTP response contains the

response message; otherwise, the server will send the response message to the replyTo

endpoint in a separate connection, and the HTTP response should be empty. When the

replyTo endpoint is exposed by the client itself, as described in the asynchronous client

chapter, this mechanism provides an easy way to implement an asynchronous

request/response message exchange pattern.

Warning: the DPWS specification explicitly disallows the use of the replyTo endpoint in

request/response operations. Although devices developed with the DC toolkit support

this advanced feature, other implementations may not and may therefore reject

service invocations using a non-NULL replyTo parameter.

The following code snippet shows an example of service endpoint reference retrieval

and service stub invocation:

servEndPt = dpws_get_default_endpoint_reference(dpws, service_proxy);

if (!servEndPt) {

… // Error handling

}

status = dpws_send___lit__Switch(dpws, servEndPt, lit__PowerState__ON);

if (status) {

… // Error handling

DPWS Core 2.1 User Guide Page 52

}

// Clean up

dpws_end(dpws);

dpws_release_proxy(device_proxy);

dpws_release_proxy(service_proxy);

Advanced use:

In addition to the use of generated stubs, the DC toolkit also provides support for

generic message processing functions on the client side. Instead of using generated C

structs to handle the XML content of the SOAP messages, these functions use a

streaming XML API to access to this content. See “Generic invocation” for details.

Both one-way and request/response stubs return a status that can be checked for error

handling. Errors can be of three types:

 Local API errors: these can occur when invalid parameters are passed to the

generated stubs.

 Remote SOAP faults: these can only occur for request/response stubs and

correspond to errors on the server side.

 Network errors: these can occur when the remote peer becomes unreachable.

In the latter case, the proxy associated to the unreachable endpoint reference is

automatically marked as invalid. Invalid proxies are discarded from the cache as soon

as their reference counter becomes null. Proxies may also be explicitly marked as

invalid using the dpws_invalidate_proxy function. A proxy status may be checked

using the dpws_check_proxy function.

REQUEST CONTEXT CLEAN UP

The final step in the service invocation from a client is the cleanup of the request

context and other objects used during the invocation.

The request context clean up is performed by calling the dpws_end function. The role

of this function is:

 To free all transient memory allocated during message processing, including the

response structure contents returned as output parameter by stubs.

 To free all transient memory associated to the request context allocated by API

functions.

 To release all proxies that have been returned by device and service lookup

functions.

Because the dpws_end function has a direct impact on the amount of dynamic memory

consumed by an application, it is important to call it often enough to avoid large

peaks of memory use.

In addition, applications should also:

 Free all transient information returned by API functions that is dynamically

allocated on the process heap. The API reference manual clearly identifies the

few functions that perform dynamic memory allocation on the heap.

 Release all proxies that have been explicitly pinned.

DPWS Core 2.1 User Guide Page 53

COMPILING AND LINKING
The DC runtime environment is provided as a set of static or shared libraries that must

be linked with both the generated code for the invoked Web services and the

application code to produce an executable client.

THE DPWS CORE L IBRARIES

The following table shows the names of the static and shared libraries that implement

the DC runtime. The names are given for the Windows platform, but equivalent ones

are defined for the Linux platform.

Static libraries Shared libraries

al.lib
common.lib
dcpl.lib
dpwslib.lib

dcruntime.dll

All the necessary functions and structs declarations are provided in the

dc/dc_Dpws.h header file, which must be included in all application files using the

DC toolkit API.

Advanced use:

The DC toolkit provides additional libraries implementing advanced features. These

libraries are described in their respective sections of the “Advanced features” chapter.

GENERATED CL IENT AND APPL ICATION F I LES

The set of files that must be compiled and linked with the DC runtime libraries include:

 For each Web Service called ws, the generated file called wsClientLib.c. This file

includes both the stub code (wsClient.c) and the marshalling/unmarshalling code

(wsC.c).

 The file(s) containing the client code used to invoke the generated stubs. One of

these files should also include the ws.nsmap generated file for each used Web

Service (note that this file contains global variable declarations and should

therefore be included only once in an application).

Examples of projects for both the Windows and the Linux platforms are provided in

the package samples.

Warning: forgetting to include the ws.nsmap file or including it more than once is a

usual source of link errors when getting started with the DC toolkit.

DPWS Core 2.1 User Guide Page 54

PEER-TO-PEER CLIENT DEVELOPMENT

DEVELOPMENT PROCESS OVERVIEW
The following figure highlights the main steps in the development of a device that also

acts as a peer-to-peer client, using the DC toolkit.

These steps are almost the same as those defined for a simple device development,

except for:

 The additional generation of remote services stubs.

 The services implementation, which requires the integration of the remote service

stubs invocation inside the service function.

 The compilation and link stage, during which both server-side and client-side

generated code must be combined.

The three above steps are further detailed in the following sections. The description of

the other steps can be found in the “Services and device development” chapter.

CODE GENERATION
The code generation phase for a device acting as a peer-to-peer client combines the

code generation of a server and a client:

 For each Web Service ws implemented by the device, the service skeletons must

be generated.

 For each Web Service rws invoked by the device, the service stubs must be

generated.

The tools and command line arguments previously described in “Code generation” are

still applicable in this scenario. The following generated files are needed by the

implementation:

 For each Web Service ws implemented by the device: wsC.c, wsH.h, wsStub.h,

ws.nsmap, wsServer.c and wsServerLib.c.

•Service skeletons generation

•Remote service stubs generation

•Service operations implementation

•Remote service invocation

•Use of events

•Hosted services deployment

•Discovery and device metadata configuration

DPWS Core 2.1 User Guide Page 55

 For each Web Service rws invoked by the device rwsC.c, rwsH.h, rwsStub.h,

rws.nsmap, rwsClient.c and rwsClientLib.c.

INTEGRATING SERVER AND CLIENT CODE
The invocation of service stubs within service implementation code is similar to the

simple service invocation described in the “Client implementation” section, and requires

the following steps:

 Request context initialization.

 Devices and services discovery.

 Service invocation through generated stubs.

 Request context clean up.

However, there are a few differences induced by the fact that the client is executed

within a device. They are detailed below.

CACHE INIT IAL IZAT ION AND UPDATE

A device acting as a peer-to-peer client uses the discovery mechanisms offered by the

DC toolkit to discover its peers and the hosted services they expose. Device peers and

their services therefore appear as proxies in the device cache.

Unlike a pure client, a device always has a running discovery listener, in order to

answer to discovery requests sent by clients. In the DC toolkit, this listener is also used

to dynamically update the cache when Hello and Bye messages are received.

Advanced use:

In order to monitor and control the number of proxies stored in the cache, the cache

API provides some advanced configuration features supporting:

 The definition of callback functions called upon asynchronous modification of the

cache through Hello and Bye messages. See “Lifecycle callbacks” for details.

 The definition of cache size control mechanisms, based on filters or maximum size.

See “Cache content control” for details.

Several strategies can be used to retrieve the peer service endpoint references

required by the remote service stubs:

 Initialize the cache at start-up time, and store the retrieved peer endpoint

references for future use in the service functions. With this approach, changes in

the network topology may result in invalid endpoint references. The service

invocation code must therefore be prepared to handle communication errors and

update the cache and the endpoint references by performing a discovery lookup

after a failure. Registering appropriate callback functions in the cache to monitor

asynchronous changes may help reduce the number of unexpected failures.

 Invoke the discovery functions before each service stub invocation: this approach is

less efficient, but ensures that peer proxies and endpoints are up-to-date. In most

cases, because the cache is asynchronously updated by discovery announcement

messages, the lookup request will retrieve the requested information in the cache

and will not generate a network request, thus limiting the performance penalty.

DPWS Core 2.1 User Guide Page 56

Advanced use:

The XML-based configuration mechanism provides support for declaring peer

references and for binding them at runtime. See “XML configuration” for details.

INVOKING A REMOTE OPERATION FROM A SERVICE FUNCTION

Service stub invocations inside a service function follow the rules previously described

for pure clients. Care must however be taken to avoid possible confusion between two

distinct request contexts, represented as struct dpws pointers:

 The server request context: this context is passed to the service function by the DC

runtime, and can be used to retrieve information about the request being

processed, as well as to allocate memory (using dpws_malloc) to populate the

service function response structure.

 The client request context: this is a separate request context, which must be

allocated and initialized by the application code before being passed as

parameter to the stub invocation. It is used as described in the pure client chapter,

and must generally be cleaned up after use using the dpws_end function. A client

request context may be reused in subsequent invocations, as long as it is used by

no more than one thread at a time. The dpws_client_init function only needs

to be called once before the first use.

Warning: Mixing up server and client request contexts in API calls will lead to

unpredictable results.

COMPILING AND LINKING
The DC runtime environment is provided as a set of static or shared libraries that must

be linked with the generated code for both the implemented Web services and the

invoked Web services and with the application code to produce an executable server.

THE DPWS CORE L IBRARIES

Libraries and associated header files are the same as those listed for a simple device

development.

GENERATED SERVER , GENERATED CL IENT AND APPL ICATION FI LES

The set of files that must be compiled and linked with the DC runtime libraries include:

 For each Web Service called ws, the generated file called wsServerLib.c. This file

includes both the skeleton code (wsServer.c) and the marshalling/unmarshalling

code (wsC.c).

 For each remote Web Service called rws, the generated file called rwsClientLib.c.

This file includes both the stub code (rwsClient.c) and the

marshalling/unmarshalling code (rwsC.c).

 For each Web Service called ws, the file containing the implementation of the

service functions. The implementation should contain the client code used to invoke

the generated stubs for the remote Web Services. This file should also include the

ws.nsmap generated file, as well as the rws.nsmap generated file for each invoked

remote Web Service (note that these nsmap files contain global variable

declarations and should therefore be included only once in an application).

 The file(s) containing the registry configuration code and the implementation of the

server main loop.

Note that it is possible to include in the same device both the skeleton and the stub

code for the same service.

DPWS Core 2.1 User Guide Page 57

Examples of projects for both the Windows and the Linux platforms are provided in

the package samples.

Warning: forgetting to include a ws.nsmap or rws.nsmap file or including it more than

once is a usual source of link errors when getting started with the DC toolkit.

DPWS Core 2.1 User Guide Page 58

ASYNCHRONOUS AND EVENTING CLIENT

DEVELOPMENT

DEVELOPMENT PROCESS OVERVIEW
The following figure highlights the main steps in the development of client that supports

the reception of asynchronous responses and events.

With respect to a standard client development, several steps are added or extended:

 Handler skeletons are generated in addition to service stubs. Handler skeletons

implement the dispatch mechanisms for handling asynchronous response messages

and events.

 Handler skeletons invoke handler functions, which must be implemented by the

application developer.

 The asynchronous reception of messages requires a server mechanism: both a

server configuration step and the implementation of a server loop are required.

 The compile and link stage is modified to accommodate the new generated

handler files.

These steps are further detailed in this chapter.

Note that when the client is also a device (case of the peer-to-peer device described

in the “Peer-to-peer client development” chapter), the above steps extend equivalent

steps in the device development process, as described in the “Services and device

development” chapter. Therefore, the guidelines described in the following sections

also apply to that scenario.

CODE GENERATION
Generating the code for asynchronous message handlers involves:

 Retrieving the WSDL file(s) where these handlers are specified;

 Generating code from the WSDL files, including the handler skeletons and the

marshalling/unmarshalling code.

•Service stubs generation

•Handler skeletons generation

•Handler functions implementation

•Stack and request context initialization

•Discovering devices and services

• Invoking the services

•Handlers deployment

•Event subscriptions

DPWS Core 2.1 User Guide Page 59

Selecting the right set of WSDL files for which handler skeletons must be generated

can be more complicated than for a simple Web Service client:

 In the usual case where clients subscribe to events for themselves and request

asynchronous responses to be sent back to them in a separate channel, the WSDL

files used to generate service stubs and handler skeletons are the same.

 When asynchronous messages and events are received as a result of requests or

subscriptions performed by third parties, the set of WSDL files to be retrieved

depends on those third party actions.

The code generation for the client uses the wsdl2h and soapcpp2 tools already

introduced for server-side code generation.

The following commands are required for generating the handler skeletons from a

WSDL document:

wsdl2h –c –o example.gsoap -t typemap.dat example.wsdl

soapcpp2 –2ucn –pws –d gen example.gsoap

These commands and options are the same as those used for the server-side code

generation, which are detailed in the “Code generation” section. Only the following

generated files are required when implementing handlers: wsC.c, wsH.h, wsStub.h,

ws.nsmap, wsHandler.c and wsHandlerLib.c. In the usual case where both cient stubs and

handler skeletons are used in the same client, the wsClient.c and wsClientLib.c files must

be added to this list.

HANDLER IMPLEMENTATION
Once the handler skeleton is generated, it is necessary to implement the handler

functions that are called by the skeleton. The reunion of the generated code and the

handler functions represent the complete handler implementation.

The generated skeleton relies on two types of handler functions:

 Each output operation (Notification) declared in a gSOAP annotated header file

is associated with a generated skeleton function that invokes an event handler

function.

 Each request/response operation declared in a gSOAP annotated header file is

associated with a generated skeleton function that invokes a response handler

function.

The name and parameters of an event handler function are derived from the

operation declaration in the gSOAP annotated header file:

 The name of the event handler function is the name of the output operation

(including the double underscore in case of doc/literal operations).

 The first parameter is a pointer to a struct dpws, passed to the handler

function by the DC runtime environment to provide access to the execution context

of the current Web Service request.

 The remaining parameters are the same as those declared in the annotated

header file, except for the void parameter that is dropped.

The name and parameters of a response handler function are derived from the

operation declaration in the gSOAP annotated header file:

 The name of a response handler function is the name of the request/response

operation, followed by _handler.

DPWS Core 2.1 User Guide Page 60

 The first parameter is a pointer to a struct dpws, passed to the handler

function by the DC runtime environment to provide access to the execution context

of the current Web Service request.

 The second parameter is the last parameter in the annotated header file

declaration, which corresponds to the operation response parameter.

The following is an example of an event handler and a response handler declaration

invoked by a generated handler skeleton:

int __wsh__CycleEnded(

 struct dpws*,

 struct _wsh__CycleEnd *wsh__CycleEnd);

int __wsh__GetCycleStatus_handler(

 struct dpws*,

 struct _wsh__CycleStatus *);

The rules and guidelines for the implementation of the handler functions are the same

as those expressed for service functions implementing one-way operations (handler

functions never produce a response message).

Warning: Even in the case where only events or only asynchronous responses are

expected to be received by an asynchronous client, all handler functions must be

implemented, as link errors would occur otherwise.

Advanced use:

Generic message processing functions may be used in place of the generated handler

skeletons. See “Generic invocation” for details.

SERVER CONFIGURATION
Once handlers are implemented, the next step requires the deployment of these

handlers and the creation of the event subscriptions.

HANDLER DEPLOYMENT

Like service deployment, handler deployment is done through the configuration of

registry objects.

The main registry object used for handler deployment is called an Endpoint. An

Endpoint is a kind of anonymous ServiceEndpoint, with an implicit ServiceClass and no

metadata, as Endpoints are not supposed to be advertized to others. Endpoint objects

are the destination of asynchronous responses and event notifications. They have a

subset of the attributes of a ServiceEndpoint and ServiceClass:

 DispatchFn: a set of callback functions that will be called by the DC runtime when

dispatching a message sent to the Endpoint. The usual case is to use the dispatch

function generated by the handler skeleton generator from a WSDL document.

User-defined functions using a generic skeleton may also be used.

 FaultHandlerFn:a callback function that will be called upon reception of an

asynchronous fault. This can be useful as asynchronous response messages may

contain a SOAP fault instead of the expected response body.

 EventEndHandlerFn: a callback function that will be called upon reception of

SubscriptionEnd messages. These messages are sent by event sources when they

must cancel a subscription before its expected termination.

DPWS Core 2.1 User Guide Page 61

 UserData: a pointer to a user-defined object that can be used to associate

application-specific information to the Endpoint. This data can be retrieved at

execution time in the handler functions.

ServicePort objects can be associated to an Endpoint to specify the network addresses

on which asynchronous responses and event notifications can be received. The Address

attribute of Endpoint service ports follows the same rules as those presented in the

“The registry object model” section of the device development chapter.

The DC toolkit API provides the following mechanisms to configure handler endpoints:

 Endpoint objects can be created with the dpws_create_endpoint function. This

function does not take any parameters. Besides the endpoint, this function also

creates a ServicePort object attached to the Endpoint and configured with a

generated UUID as address. The function returns a endpoint handle reference.

 The DispatchFn, FaultHandlerFn and EventEndHandlerFn callbacks can be set by

using the generic attribute setters with the endpoint handle reference as

parameter. Note that only the first callback is mandatory.

 When required, the generated ServicePort address attached to the Endpoint may

be overridden by retrieving the service port handle reference using the

dpws_get_default_service_port function and setting its address with the

appropriate setter.

The following code snippet shows the creation and initialization of an endpoint used

for asynchronous message handling:

hEndpoint = dpws_create_endpoint();

// Configure the endpoint attributes.

DPWS_ADD_PTR_ATT(hEndpoint, DPWS_PTR_HANDLING_FUNCTION,

 &wsh_handle_event);

DPWS_ADD_PTR_ATT(hEndpoint, DPWS_PTR_CALLBACK_EVENT_END,

 &subscription_end);

EVENT SUBSCRIPT ION MANAGEMENT

Clients subscribe to events by sending a subscription request to an event source, i.e. a

Web Service that exposes events. In accordance with the WS-Eventing specification,

any service that features a wse:EventSource attribute with a true value in at least

one of its portType declarations can act as an event source. A successful subscription

request results in a subscription identifier being returned to the client as an endpoint

reference. This endpoint reference can subsequently be used by the client to manage

the subscription. Subscription creation and management are based on remote service

operations invocation, and require an initialized client request context (represented by

a pointer to a struct dpws object) to operate properly.

The DC toolkit API provides the dpws_event_subscribe and

dpws_event_subscribe_ex functions to create a subscription. Both functions take

similar parameters:

 The first parameter is a pointer to the client request context.

 The second parameter is the endpoint reference representing the event source, to

which the subscription request is sent. This endpoint reference is a pointer to a

struct wsa_endpoint_ref object, and can either be obtained from service

proxies using the discovery mechanisms previously described or be built manually.

 The third parameter is the event sink endpoint reference, to which event

notifications will be sent.

DPWS Core 2.1 User Guide Page 62

 The fourth parameter is the endpoint reference to which subscription end

messages will be sent in case of abnormal termination. This parameter is optional

(i.e. it may be NULL). It is often the same as the previous one.

 The fifth parameter is an optional filter that may contain a list of WS-Addressing

action URIs representing a subset of the notification operations exposed by the

event source.

 The sixth parameter is an in-out parameter that represents the subscription

duration. The input value is the requested duration, which may be NULL to denote

an unlimited duration. The output value is the duration granted by the event

source, which may be smaller than the requested value.

The two functions differ only by the type of their third and fourth parameters. The

dpws_event_subscribe function uses pointers to struct wsa_endpoint_ref

objects that may be explicitly constructed from service port handle references or built

manually (the latter case is useful when the notification endpoint is a third-party

remote endpoint). The dpws_event_subscribe_ex function directly uses service

port handle references. The second form is recommended, as it allows the DC runtime

environment to dynamically build the appropriate endpoint reference when more than

one network interface is in use.

The DC runtime provides additional API functions for cancelling a subscription,

renewing a subscription and obtaining a subscription status, including its expiration

date. These functions take as parameters a client request context and the endpoint

reference returned by the subscription creation function.

IMPLEMENTING THE SERVER ARCHITECTURE
The implementation of the server architecture for a client that receive asynchronous

responses and events is strictly the same as the architecture for a device, which is

described in the “Implementing the server architecture” section of the device

development chapter.

COMPILING AND LINKING
The DC runtime environment is provided as a set of static or shared libraries that must

be linked with the generated code for both the implemented Web services and the

invoked Web services and with the application code to produce an executable server.

THE DPWS CORE L IBRARIES

Libraries and associated header files are the same as those listed for a simple client

development.

GENERATED HANDLER AND APPL ICATION F ILES

In addition to the files required for a simple client development, the set of files that

must be compiled and linked with the DC runtime libraries include:

 For each Web Service called ws, the generated file called wsHandlerLib.c. This

file includes both the handler skeleton code (wsHandler.c) and the

marshalling/unmarshalling code (wsC.c).

 For each Web Service called ws, the file containing the implementation of the

handler functions. This file should also include the ws.nsmap generated file (note

that the ws.nsmap files contains global variable declarations and should therefore

be included only once in an application).

 The file(s) containing the registry configuration code and the implementation of the

server main loop.

DPWS Core 2.1 User Guide Page 63

Examples of projects for both the Windows and the Linux platforms are provided in

the package samples.

Warning: forgetting to include a ws.nsmap or rws.nsmap file or including it more than

once is a usual source of link errors when getting started with the DC toolkit.

DPWS Core 2.1 User Guide Page 64

ADVANCED FEATURES

CUSTOMIZING CODE GENERATION
One of the challenges to be met when developing Web Services in C is the definition

of an appropriate mapping between XML Schema type definitions and C structs.

Because the two languages have widely different features, the default mechanisms

provided by the code generation tools are not always enough to meet all application

requirements. This section provides a set of guidelines that allows the developer to:

 Override the default mapping from XML Schema types to C types.

 Directly modify the gSOAP annotated header file to better control the C code

generation.

 Replace for a given C type the generated marshalling/unmarshalling code with

hand-written code.

MAPPING XML SCHEMA TYPES TO SPECI F IC C TYPES

The wsdl2h tool is used to transform WSDL and XML Schema documents into gSOAP

annotated header files. The mapping between XML Schema types and C types

appearing in the generated annotated header files is controlled by the

typemap.dat configuration file, which is passed as a command-line parameter to the

wsdl2h tool.

The complete set of wsdl2h command-line options can be found in §8.2.10 of the

gSOAP manual [gSOAP Guide].

The typemap.dat file contains mostly two types of information:

 Namespace prefixes declarations: they can be used to override the default ns1,

ns2… namespace prefix generation used by the tool.

 Type definitions: they can be used to associate a specific C type to a given XML

Schema type (either predefined or application-defined), identified by its QName

in gSOAP notation (ns__localName).

Namespace prefixes declarations follow the form:

prefix = namespace URI string

For instance, the following line associates the wsa prefix to the WS-Addressing URI:

wsa = "http://schemas.xmlsoap.org/ws/2004/08/addressing"

Type definitions follow the form:

type = [declaration] | use [| pointer use]

where:

 Type is the name of the XML Schema type, using the gSOAP notation. Note that

the prefix used in this type name must have been previously declared in the file,

following the above rule.

 Declaration is an optional C type declaration (e.g. a struct, typedef or enum). It

may also be an import statement for a gSOAP annotated header file containing

the declaration. It may not be specified if the C type is predefined (e.g. char*)

or already defined by another means.

 Use is the form under which the type will be referred to in operation prototypes

and struct declarations.

DPWS Core 2.1 User Guide Page 65

 Pointer use is the form under which pointers to the type will be referred to. This

form is used for optional or array fields in struct declarations. When not specified,

the default for is the „use‟ form followed by „*‟, unless „use‟ is already a pointer.

The following file snippet shows examples of type definitions:

xsd__int = | int

xsd__string = | char* | char*

xsd__binary = #import "xop.h" | _xop__Include | _xop__Include *

wsa__EndpointReference = | endpoint_ref | endpoint_ref

More details about this feature can be found in the gSOAP User Manual [gSOAP

Guide], § 8.2.11.

EDIT ING THE GSOAP ANNOTATED HEADER F I L E

The wsdl2h tool provides a convenient way to generate a gSOAP annotated header

file from a WSDL document. The generated file can then be used as input to the

soapcpp2 tool to generate the C code. However, directly editing the gSOAP

annotated header file provides an alternative and more flexible way to specify the

mapping between XML Schema types and C types. The syntax for the gSOAP

annotated header file is described in details in the gSOAP User Manual [gSOAP

Guide].

The complete set of soapcpp2 command-line options can be found in §9.1 of the

gSOAP manual [gSOAP Guide].

The gSOAP syntax has been extended to support some of the new features required

by the WS-Addressing and WS-Eventing specifications.

When editing the gSOAP annotated header file for generating service stubs and

skeletons, the following directives must be used for each operation to specify the

wsa:Action URI associated to the input and (in case of request/response operation)

output messages:

//gsoap ns service method-request-action: wsdlOp wsaAction

//gsoap ns service method-response-action: wsdlOp wsaAction

The following directives must be used to identify a given service as an event source

and its output-only operations as event notifications:

//gsoap ns service event-source: true

//gsoap ns service method-message-exchange-pattern: wsdlOp output

Examples of use of the above directives can be found in gSOAP annotated header

files generated by the wsdl2h tool.

IMPLEMENTING CUSTOM MARSHALLERS/UNMARSHALLERS

When maximum flexibility is required for mapping XML types to C types, it is possible

to deactivate the soapcpp2 code generation for a given C type and instead provide

hand-written serializers and deserializers.

Code generation is deactivated by simply declaring a type as extern. For instance:

extern typedef struct wsa_endpoint_ref *endpoint_ref;

This declares the endpoint_ref type as a pointer to a struct

wsa_endpoint_ref, and tells soapcpp2 not to generate the serializers and

deserializers for the endpoint_ref type.

DPWS Core 2.1 User Guide Page 66

The developer must provide the following functions for each type T declared as

extern:

void soap_serialize_T(struct soap *soap, const T *a)

void soap_default_T(struct soap *soap, T *a)

void soap_out_T(struct soap *soap, const char *tag, int id, const T *a,

 const char *type)

T *soap_in_T(struct soap *soap, const char *tag, T *a,

 const char *type)

More details about this feature can be found in the gSOAP User Manual [gSOAP

Guide], § 19.5.

GENERIC INVOCATION
Sometimes, for instance for web services using very simple XML content (or on the

opposite fully generic messages), one may want to get rid of code generation using

the DPWSCore “generic stub & skeleton” feature.

EPX API

An XML processing API is the key feature to achieve generic invocation. DPWSCore

defines one named EPX, and provides a default implementation based on the gSOAP

runtime. This is a streaming XML processing API using the pull-parsing approach in a

similar way than Stax in the Java world.

Warning:

1. This XML parsing API is currently focused and optimized for the XML subset used

by SOAP 1.2. This is why for instance, processing instructions are not considered.

Entities are also supposed to be resolved by the parser. As a low-level API with

no validation, whitespaces are processed like any other character data.

2. EPX provides an experimental limited typed API.

The pull-parsing scheme relies on an event stream that is:

 read event-by-event by a parsing application (XML parsing),

 produced by an application using dedicated functions (XML serialization).

Considering the previously mentioned limitations, events related to XML content to be

considered are (others, like comments are not supported by the current

implementation):

 EPX_EVT_START_DOCUMENT : XML document prolog event.

 EPX_EVT_END_DOCUMENT : XML file end event.

 EPX_EVT_START_ELEMENT : Element start-tag event.

 EPX_EVT_PREFIX_DEFINITION : Prefix definition event (xmlns attributes). This

event is optional and produced only if the

EPX_OPT_GENERATE_PREFIX_DEFINITIONS option is turned on.

 EPX_EVT_ATTRIBUTE : Attribute event.

 EPX_EVT_END_ELEMENT : Element end-tag event.

 EPX_EVT_CHARACTERS : Characters events that may occur several time

consecutively if the parser decides it. Coalescing is not required.

If the order of most events is obvious considering the structure of an XML document,

event stream APIs may differ about the order they define for events related with the

open element tag. The EPX order for these events is:

1. EPX_EVT_START_ELEMENT

2. EPX_EVT_PREFIX_DEFINITION

DPWS Core 2.1 User Guide Page 67

3. EPX_EVT_ATTRIBUTE (xsi:type, then xsi:nil should be first)

Let‟s consider the following very simple XML document:

<?xml version="1.0" encoding="UTF-8"?>

<ns:a xmlns:ns=”http://www.example.com/dc/epx” att1=”value1”>

 <ns:b>Element B</ns:b>

 <c att2=”value2”>

</ns:a>

This document generates the following EPX event stream (considering whitespaces are

skipped by a SOAP-oriented XML parser):

EPX_EVT_START_DOCUMENT

EPX_EVT_START_ELEMENT

EPX_EVT_PREFIX_DEFINITION

EPX_EVT_ATTRIBUTE

EPX_EVT_START_ELEMENT

EPX_EVT_CHARACTERS

EPX_EVT_END_ELEMENT

EPX_EVT_START_ELEMENT

EPX_EVT_ATTRIBUTE

EPX_EVT_END_ELEMENT

EPX_EVT_END_ELEMENT

EPX_EVT_END_DOCUMENT

Of course, every type of event has associated EPX functions to access its specific data

as illustrated later.

PARSING

First thing to do for reading an XML stream using EPX is creating an EPX parser:

void *pctx;

struct soap soap;

pctx = epx_new_parser(NULL, &soap);

Note that no implementation parameter is passed to the function (NULL in fact) so the

default implementation on gSOAP is selected (the only one currently). The second

parameter is implementation-specific and is required by gSOAP to be a runtime

structure allowing XML processing. If everything went well, the call should return an

opaque parsing context that will be passed to every subsequent EPX call.

Advanced use:

Other initialization APIs, such as epx_get_parser_option,

epx_is_parser_option_settable allow the user to retrieve the parsing options

supported by the implementation. These may be very important especially if the EPX

implementation is unknown. For instance, we know here that the gSOAP implementation

has the EPX_OPT_GENERATE_PREFIX_DEFINITIONS turned on so that

EPX_EVT_PREFIX_DEFINITION events will be produced. See the API reference [DC

API] for more details.

The epx_start_parsing function allows setting the parsing options and specifying

what to parse (the source). For the default gSOAP implementation, this parameter is

unused since it is basically made for parsing on an open socket.

if (epx_start_parsing(pctx, NULL, EPX_OPT_GENERATE_PREFIX_DEFINITIONS))

{

 printf(“Could not initialize parsing (%d)\n”,

 epx_get_parser_error(pctx));

 exit(1);

}

The following code snippet shows how to process the parsing of a document, printing

the parsed information on the console.

DPWS Core 2.1 User Guide Page 68

epx_event cev;

for (;;)

{

 switch(cev = epx_next(pctx)) // sets current event

 {

 case EPX_EVT_ERROR:

 printf("Parsing error %d.\n", epx_get_parser_error(pctx));

 return;

 case EPX_EVT_START_DOCUMENT:

 printf("Start document event.\n");

 break;

 case EPX_EVT_IDLE: case EPX_EVT_END_DOCUMENT:

 case EPX_EVT_END_FRAGMENT:

 printf("Parsing ended.\n”);

 break;

 case EPX_EVT_START_ELEMENT:

 printf("Start element event:{%s}%s\n",

 epx_get_ns_uri(pctx), epx_get_lname(pctx));

 break;

 case EPX_EVT_PREFIX_DEFINITION:

 printf("Prefix %s defined for %s\n",

 epx_get_ns_prefix(pctx), epx_get_ns_uri(pctx));

 break;

 case EPX_EVT_ATTRIBUTE:

 printf("Attribute event:{%s}%s, value=’%’\n",

 epx_get_ns_uri(pctx), epx_get_lname(pctx),

 epx_get_characters(pctx));

 break;

 case EPX_EVT_END_ELEMENT:

 printf("End element event:{%s}%s\n",

 epx_get_ns_uri(pctx), epx_get_lname(pctx));

 break;

 case EPX_EVT_CHARACTERS:

 printf("Characters event: value=’%s’\n",

epx_get_characters(pctx));

 break;

 }

}

epx_delete_parser(pctx);

Note the final call to epx_delete_parser that performs parsing resource cleaning.

SER IAL IZAT ION

Serializer initialization is similar to the one of parser:

void *sctx;

struct soap soap;

sctx = epx_new_serializer(NULL, &soap);

if (epx_start_document(sctx, NULL, EPX_OPT_INDENT))

{

 printf(“Could not initialize serialization (%d)\n”,

 epx_get_serializer_error(sctx));

 exit(1);

}

Note the required options: we ask the serializer to perform XML indentation for

human-readability. Event stream production is then quite simple and consists in calling

an EPX function for each event to produce. For instance, to produce the simple XML

document described earlier:

if (epx_start_element(sctx, ”http://www.example.com/dc/epx”, “a”)

 || epx_define_prefix(sctx, “ns”, ”http://www.example.com/dc/epx”)

 || epx_add_attribute(sctx, NULL, “att1”, ”value1”)

 || epx_start_element(sctx, ”http://www.example.com/dc/epx”, “b”)

 || epx_put_characters(sctx, “Element B”)

DPWS Core 2.1 User Guide Page 69

 || epx_end_element(sctx, ”http://www.example.com/dc/epx”, “b”)

 || epx_start_element(sctx, NULL, “c”)

 || epx_add_attribute(sctx, NULL, “att2”, ”value2”)

 || epx_end_element(sctx, NULL, “c”)

 || epx_end_element(sctx, ”http://www.example.com/dc/epx”, “a”)

 || epx_end_document(sctx))

 printf(“Serialization error (%d)\n”, epx_get_serializer_error(sctx));

GENERIC STUBS

To be able to invoke a Web Service without code generation, two functions are

provided: dpws_send for one-way messages, dpws_call for request-replies. The

first two required parameters are the same as for generated stubs:

 A dpws runtime structure representing the client request context,

 A WS-Addressing endpoint reference representing the message destination.

Note that unlike generated stubs, the generic dpws_call function does not support

the specification of a replyTo endpoint.

The third parameter is the WS-Addressing action associated to the operation input

message.

Both generic stub functions use then two optional parameters to pass prefix definitions

that could be defined at the root of the SOAP message when it is both used in headers

and body, avoiding then redundancy.

The rest of the parameters are “body callbacks” for request & response messages and

their associated “user data”. These callbacks are user-defined functions receiving

beside their user data an EPX context to produce or read the XML event stream for

message bodies. Note that the signature of these callbacks is very simple since their

only concern must be limited to XML processing.

Further information

The API reference [DC API] will bring you some more details about the feature, but if

you want an example of use of the generic stub, please have a look at the

dyndepl_client module code. Indeed, this is just a helper wrapping the generic stub,

avoiding the user to provide, for instance, message action URIs for WS-Management

(see “Client-side support” for details).

GENERIC SKELETONS

Writing a skeleton using the generic skeleton feature requires a little more than calling

APIs and implementing body callbacks. Indeed, the user will have to write the dispatch

function that is usually generated and passed to the DPWS Registry using the

following pattern:

int myservice_serve_request(struct dpws *dpws)

{

 char* action = dpws->action ? dpws->action : "";

 if (!strcmp(action, “http://www.example.com/op1/request”))

 return dpws_process_request(dpws,

 “http://www.example.com/op1/response”,

 “http://www.example.com/op1/fault”,

 NULL, 0, op1_cbk

);

 else if (!strcmp(action, “http://www.example.com/op2/request”))

 return dpws_process_request(dpws,

 “http://www.example.com/op2/response”,

 “http://www.example.com/op2/fault”,

 NULL, 0, op2_cbk

);

 else if (!strcmp(action, “http://www.example.com/op3/request”))

 return dpws_process_request(dpws,

 NULL,

DPWS Core 2.1 User Guide Page 70

 NULL,

 NULL, 0, op3_cbk

);

 return dpws_dpws2soap(dpws)->error = SOAP_NO_METHOD;

}

The dpws_process_request API is called with parameters specific to every

operation among which:

 “http://www.example.com/op1/response” for instance is the action of the response

message, showing that this operation is a request-reply contrary to “op3” (NULL

supplied),

 “http://www.example.com/op1/fault” defines the potential fault action (for

request-reply operations only),

 Like for the generic stub, a table with prefix definition can be supplied for

response messages so that their definitions can occurs on the message root

element. Not used in the previous sample,

 A callback for service implementation (service callback).

The service callback is a little different from the stub one and has the following

parameters:

 dpws is the runtime structure containing for message processing context,

 An EPX parsing context for incoming message,

 An output parameter allows returning a callback that will produce the response

message if any. The signature is then similar to the callback used to produce

request messages with the generic stub.

 A second output parameter allows returning the “user data” that will be passed to

the response callback once response SOAP header has been processed.

Note that contrary to other callbacks described previously, the service callback has a

double role that is not limited EPX processing:

1. Request parsing with EPX,

2. Normal service processing (like done for a generated skeleton).

Warning: Since EPX stream production for response is done in a dedicated callback,

the implementor should assume that only EPX serialization errors must be returned by

this function. Any applicative fault should be detected and raised before, during the

service processing (in the service callback).

COMPIL ING AND L INKING

Extra libraries are required for the EPX and generic stub & skeleton features, to be

added to the required core stack libraries:

 Shared libraries Static libraries

Root name dcxml Xmltools

Linux name libdcxml.so libxmltools.a

Windows name dcxml.dll xmltootslib.lib

It is also necessary to include the dc/dc_Epx.h and

dc/dc_GenericInvocation.h headers file in the application code to respectively

use the EPX API and the generic stubs and skeletons.

DPWS Core 2.1 User Guide Page 71

ADVANCED REGISTRY FEATURES

DYNAMIC REGISTRY MODIF ICATION API

Device configuration can be updated while server is running and almost without service

interruption. DPWSCore uses for this a clone-copy mechanism that allows free device

modification while online devices remain read-only.

The figure above shows the steps for “hot configuration”:

1. One of the read-only online devices (reachable through the invocation list) is

cloned using the dpws_clone_device. A new handle reference is then

returned for the new object.

2. The created object can be modified using dpws_set_XXX_att functions.

Hosted service can even be added to the clone device.

3. When configuration is over, the clone should be put online using

dpws_replace_device that creates a clone invocation list where the clone

device has replaced the original device. The clone invocation will then be

anchored to the network endpoint that receives web service requests in place

of the original invocation list.

ADVANCED CACHE FEATURES
If a discovery listener has been started for receiving Hello & Bye messages, the cache

becomes “living” and its content will asynchronously change upon message reception.

Some additional features may be used to better control the “living cache” content.

CACHE CONTENT CONTROL

Cache content can be controlled in several ways:

 The number of device proxies stored in the cache can be controlled using a LRU

algorithm (Least Recently Used) that keeps in cache proxies that were recently

accessed through the user API,

 The device proxies can also be controlled using WS-Discovery criteria. Indeed, the

user can set the same kind of filters as used for dpws_lookup_ex to keep only

devices of given types or scopes.

Warning: All lookup APIs use the discovery cache and no shortcut is currently possible.

As a consequence, all lookup API will be constrained by cache settings. For instance, if

Invocation list

Device 2‟

HS HS HS

Device 2

HS HS HS



Web Service invocation

Invocation list

cloning &

substitution



Cloned invocation list

Device1

HS HS HS

Device 3

HS HS HS








Configuration

Network

endpoint

DPWS Core 2.1 User Guide Page 72

10 devices are asked but cache is limited to 5 proxies, the lookup API will only

retrieve 5 proxies at most.

Note that device proxies can be explicitly removed from the cache using the

dpws_invalidate_proxy API, normally when a device has proven to be

unreachable.

L I FECYCLE CALLBACKS

In addition, the user can monitor the devices added to or removed from the cache

using callbacks, as shown below:

DPWS_SET_PTR_ATT(DC_CACHE_HANDLE, DPWS_PTR_CALLBACK_HELLO, hello_cbk);

DPWS_SET_PTR_ATT(DC_CACHE_HANDLE, DPWS_PTR_CALLBACK_BYE, bye_cbk);

The two callbacks are registered on the cache pseudo-object. The callback signature

gives access to the dpws runtime structure representing the server request context and

to handle reference of the device proxy being added or removed, thus allowing cache

API usage.

Warning: Only “cache” API (generally named dpws_cache_xxx), that do not

generate network messages, should be used in such callbacks since the supplied dpws

structure is a server request context, processing a Hello or Bye message at the same

time.

For example:

void hello_cbk(struct dpws *dpws, short href_device)

{

 printf("\n<-- New device on the LAN: %s\n",

 dpws_cache_get_uuid(dpws, href_device));

}

XML CONFIGURATION
Toolkit configuration using an XML file is implemented by an extension that uses:

 Regular core stack configuration APIs,

 EPX and other XML utilities,

 A set of XML Schemas that define the configuration file format.

Warning: The XML configuration was introduced along with the Dynamic Deployment

feature (described later in this document) and shares some of its features such as the

component approach, properties and references. This is also why there is more than

one XML schema defining the configuration file format.

Here is an outline of a configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<dcc:Config

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wdp="http://schemas.xmlsoap.org/ws/2006/02/devprof"

xmlns:dd="http://www.soa4d.org/dpwscore/2007/08/dyndepl"

xmlns:dcc="http://www.soa4d.org/dpwscore/2008/10/config"

xmlns:trn="http://www.soa4d.org/DPWS/Samples/DynHome"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <dcc:BootSequence>xs:unsignedInt</dcc:BootSequence>

 <dcc:PreferredLanguage>xs:string</dcc:PreferredLanguage>?

 <dcc:HTTPListener port="xs:int"/>?

 <dcc:Registry>

 <dd:ServiceClass …>

 …

 </dd:ServiceClass>*

 <dcc:Device …>

 …

DPWS Core 2.1 User Guide Page 73

 </dcc:Device>*

 </dcc:Registry>

 <dcc:Cache …/>?

 <dcc:SubscriptionManager …/>?

</dcc:Config>

At the top level you can find toolkit parameters (BootSequence, PreferredLanguage)

and elements for main components of the toolkit (HTTPListener, Registry, Cache,

SubscriptionManager).

For detailed information:

The complete configuration file specification is available in DPWSCore source

repository or in distribution packages as annotated XML schemas. Schema annotations

should describe every element or attribute or may refer to API reference for

configuration parameters semantics.

REGISTRY CONFIGURATION FORMAT

The registry contains two types of root elements: service classes and devices. Other

registry objects are either represented as sub-elements (hosted service, service ports) or

not available (device model which is just a configuration helper). The service class

element is defined as follows:

<dd:ServiceClass classId="xs:anyURI">

 <dd:Interface name="xs:NCName”? type="xs:QName"/>*

 <dd:Reference name="xs:NCName" type="xs:QName"

mustSupply="xs:boolean":true?/>*

 <dd:Property name="xs:NCName" type="xs:QName"

mustSupply="xs:boolean":true?

multiple="xs:boolean":false?>xs:any</dd:Property>*

 <dd:WSDLInfo location="xs:anyURI" targetNamespace="xs:anyURI"/>*

 <dd:Implementation …>

 …

 </dd:Implementation>

</dd:ServiceClass>

You should keep in mind that the service class describes the implementation of a kind of

service. In this context:

 The Interface elements define the WSDL port types implemented by this kind of

services,

 The Reference is a concept brought by the dynamic deployment feature that

defines WSDL port types used by this service implementation. A runtime API

provided by the XML configuration extension will allow the implementation to

retrieve WS-Addressing EPRs bound for the reference at run-time for the service

instance,

 Property is a concept brought by the dynamic deployment feature that defines a

configuration parameter for this kind of service implementation. Note that the

property type is theoretically free, but is currently retrieved as simple strings using

the provided runtime API on the service instance. Note also that the element

content can be used to provide a default value for the property.

 WSDLInfo contains required information to locate the service WSDLs.

 Implementation is the fundamental element that should contain the service

implementation. The service implementation loading mechanism is made to be

extensible: loaders should be provided for every type of implementation element

so that the specific loader can use the custom content of the tag to return the

required information for the registry. For instance a generic dynamic loader for

shared libraries could be written with all library entry points defined in the

Implementation tag. Currently, no service loader is provided by the toolkit but

DPWS Core 2.1 User Guide Page 74

writing a static loader, as demonstrated in samples, requires little effort. One

static loader must be written for every service class as we will see later.

The device element contains device DPWS metadata including hosted services:

<dcc:Device metadataVersion="xs:unsignedInt">

 <dd:Address>xs:anyURI</dd:Address>?

 <dd:Types>list of xs:QName</dd:Types>?

 <dd:Scopes>list of xs:anyURI</dd:Scopes>?

 <wdp:ThisModel>

 <wdp:Manufacturer

xml:lang=”…”>xs:string</wdp:Manufacturer>

 <wdp:ManufacturerUrl>xs:anyURI</wdp:ManufacturerUrl>

 <wdp:ModelName xml:lang=”…”>xs:string</wdp:ModelName>

 <wdp:ModelNumber>xs:string</wdp:ModelNumber>

 <wdp:ModelUrl>xs:anyURI</wdp:ModelUrl>

 <wdp:PresentationUrl>xs:anyURI</wdp:PresentationUrl>

 </wdp:ThisModel>?

 <wdp:ThisDevice>

 <wdp:FriendlyName

xml:lang=”…”>xs:string</wdp:FriendlyName>

 <wdp:FirmwareVersion>xs:string</wdp:FirmwareVersion>

 <wdp:SerialNumber>xs:string</wdp:SerialNumber>

 </wdp:ThisDevice>?

 <dd:Service serviceId="xs:anyURI">

 <dd:ServiceClass classId="xs:anyURI"/>

 <dd:ServicePort>

 <wsa:Address>xs:anyURI</wsa:Address>

 </dd:ServicePort>*

 <dd:Reference name="xs:NCName">

 <wsa:EndpointReference>…</wsa:EndpointReference>

 |<dd:DiscoveryHints onMultipleMatch=”fail|pickOne”

bindingTime="deployment|runtime" onReferenceLost=”fail|retry|ignore”>

 <dd:Hint>

 <dd:Types>list of

xs:QName</dd:Types>

 <dd:Scopes>list of

xs:anyURI</dd:Scopes>

 </dd:Hint>*

 </dd:DiscoveryHints>

 </dd:Reference>*

 <dd:PropertyValue

name="xs:NCName">xs:any</dd:PropertyValue>*

 </dd:Service>*

</dcc:Device>

Let‟s focus on some specific parts of the schema (for details, please refer to the XML

schemas):

 Device/@metadataVersion should be incremented every time some data in the

device tree changes. In such situations, the configuration file should be saved.

 Types and Scopes are device parameters related to [WS-Discovery],

 ThisModel and ThisDevice are device parameters related to [DPWS],

 Service/ServiceClass/@classId must reference the ID of the service class defined

earlier in the configuration file that defines the implementation for the service.

 Service/ServiceClass/Reference allows binding a reference defined in the service

class. Two methods are available: provide a hardcoded EPR or parameters for

device discovery using WS-Discovery. The service EPR to invoke will be retrieved

using a dedicated runtime API. In “discovery” mode, the service to invoke will be

retrieved using the port type specified in the service class reference definition,

 Service/ServiceClass/PropertyValue assigns values to the properties defined in the

service class.

CACHE CONFIGURATION FORMAT

The discovery cache file configuration is currently limited to the maximum number of

devices proxies using the size attribute.

DPWS Core 2.1 User Guide Page 75

<dcc:Cache size="xs:unsignedShort"/>

SUBSCRIPT ION MANAGER CONFIGURATION FORMAT

The maximum number of “running” subscriptions can be set using the size attribute and

subscription durations can be limited using maxDuration.

<dcc:SubscriptionManager size="xs:unsignedShort"

 maxDuration="xs:duration"/>

USAGE

PROGRAMMING A STAT IC SERVICE CLASS LOADER

The static service class loader names a loader that is written to allow simple C code

linking, as done for basic device programming. The first element to be provided is a

specific tag for the implementation:

<ns:Implementation.static.pfx

 xmlns:ns=”http://www.example.com/sample”/>

The XML configuration feature must be initialized and the class loader registered:

int status;

struct qname pfx_iqn = {

 ”http://www.example.com/sample”, “Implementation.static.pfx”};

if ((status = dpws_config_init()))

 printf("Could not initialize the XML configuration feature (%d)\n",

status);

dpws_register_loader(&pfx_iqn, pfx_load_cbk);

The pfx_load_cbk (loader callback) function must be implemented by the user using

the following pattern:

int pfx_load_cbk(short href_sclass, void * psr_ctx, dispatch_cbk *

p_dispatch_cbk, struct scl_callbacks * p_cbks)

{

 if (epx_next(psr_ctx) != EPX_EVT_END_ELEMENT

 || QNAME_NOT_EQUALS_WILDCARD(

 epx_get_ns_uri(psr_ctx), epx_get_lname(psr_ctx),

 ”http://www.example.com/sample”,

 “Implementation.static.pfx”)

)

 return DPWS_ERR_INCORRECT_IMPL_TAG;

 *p_dispatch_cbk = pfx_serve_request;

 p_cbks->new_service = pfx_new_service;

 p_cbks->free_service = pfx_free_service;

 p_cbks->serialize_impl = pfx_serialize_impl;

 return DPWS_OK;

}

As shown in the last code snippet, there are two things to do in a loader callback:

 Do the parsing of the implementation tag. Note that when the function is called the

current EPX event is the implementation tag “start element”. For a static loader,

note that parsing is very simple…

 Return the callbacks for the service class:

 The dispatch function is the one usually generated and used to route SOAP

message that is registered on the service class,

 service creation: called every time a service is instantiated for the service

class. This is generally used to initialize instance runtime data.

 service deletion: called every time a service instance of this class is freed. This

is generally used to free instance runtime data.

DPWS Core 2.1 User Guide Page 76

 implementation tag serialization: The implementation tag is specific to the

loader, this is why it is called to perform on-demand EPX serialization.

For further information, please have a look at samples and API reference.

F I L E LOADING & BACKUP

The XML file persistency is performed through the EPX API implemented on the gSOAP

runtime which uses a streaming interface bound by default on BSD sockets. In order to

replace the gSOAP socket stream by a file persistence layer, several additional

components are involved, as shown below:

FileX is an adapter that plugs SUN on the gSOAP stream interface. SUN is a

DPWSCore persistency streaming interface. This technology stack results in the

following kind of code for XML file configuration operations:

void * sun_stream;

sun_stream = sun_read_init(NULL, DPWS_CONFIG_DEFAULT_ID);

if (!sun_stream)

 printf("Could not open configuration file\n”);

status = dpws_sun_load_config(&conf_dpws, sun_stream);

if (status)

 printf("Could not load DPWS configuration (%d)\n", status);

sun_stream = sun_write_init(NULL, DPWS_CONFIG_DEFAULT_ID, NULL);

if (!sun_stream)

 printf("Could not open configuration file for saving\n");

status = dpws_sun_save_config(&conf_dpws, sun_stream, DC_TRUE);

if (status)

 printf("Could not save DPWS registry (%d)\n", status);

In this code snippet, the configuration file is first loaded and immediately saved, in

fact for boot sequence management. Note that:

 The configuration file uses the default name (dpwscore.xml) and the working

directory for both loading and backup,

 Specific SUN API is used for stream opening but stream closure is performed by

the dpws_sun_load_config and dpws_sun_save_config. These API also

encapsulate the FileX plug-in in gSOAP.

 Note the last parameter of dpws_sun_save_config that is used to increment

the boot sequence before saving configuration (which must be done once by

program execution).

CLEANUP

The XML configuration/dynamic deployment feature should be cleaned when exiting

the program or when not required anymore using:

dpws_config_shutdown();

COMPIL ING AND L INKING

In addition to the core stack libraries, the XML configuration feature requires:

DPWS Core 2.1 User Guide Page 77

 Shared libraries Static libraries

Root name dcxml, dcxmlconf xmltools, xmlconf

Linux name libdcxml.so, libdcxmlconf.so libxmltools.a, libxmlconf.a

Windows name dcxml.dll, dcxmlconf.dll xmltootslib.lib, xmlconflib.lib

It is also necessary to include the dc/dc_XMLConfiguration.h and dc/dc_Sun.h

headers file in the application code.

DYNAMIC DEPLOYMENT
Most dynamic deployment features are introduced in the XML configuration feature,

especially through the XML format specification for service classes and devices. But

“dynamic deployment” meaning remote operations, a subset of [WS-Management] is

used for this, especially [WS-Transfer] and associated resource endpoint references.

The [WS-Management] resources considered are:

 Service classes,

 Devices,

 Hosted services, which are considered both as a first-class [WS-Management]

resource and a sub-element of their device resource.

The following table shows what [WS-Transfer] operations are allowed for each

resource type or fragment:

Operation Service
class

resource

Device
resource

Service
resource

Types
fragment

Scopes
fragment

ThisModel
fragment

ThisDevice
fragment

Get X X X X X X X

Create X X X

Put X X X X X

Delete X X X

 Create returns resource endpoint references that will be used for subsequent

operations,

 Get is used for reading an existing resource or fragment,

 Put allows to overwrite an existing resource,

 Delete destroys a resource provided it is not used anymore. For instance, a service

class cannot be deleted is it is referenced by a hosted service.

SERVER-SIDE SUPPORT

In order to use the “dynamic deployment” feature, not only the appropriate runtime

version must be selected, but XML configuration must be used to configure the dynamic

deployment service:

<dd:ServiceClass

xmlns:wst="http://schemas.xmlsoap.org/ws/2004/09/transfer"

classId="http://www.soa4d.org/dpwscore/2007/09/dyndepl/wsman">

 <dd:Interface type="wst:Resource" />

 <dd:Interface type="wst:ResourceFactory" />

 <dd:Implementation.static.dyndepl />

</dd:ServiceClass>

<dcc:Device …>

 <dd:Types>…</dd:Types>

 <wdp:ThisModel>

 …

 </wdp:ThisModel>

 <wdp:ThisDevice>

 …

 </wdp:ThisDevice>

 <dd:Service

serviceId="http://www.soa4d.org/dpwscore/2007/09/dyndepl/wsman">

DPWS Core 2.1 User Guide Page 78

 <dd:ServiceClass

classId="http://www.soa4d.org/dpwscore/2007/09/dyndepl/wsman" />

 <dd:ServicePort>

 <wsa:Address>…</wsa:Address>

 </dd:ServicePort>

 </dd:Service>

 …

</dcc:Device>

Note that the template for the service class is immutable contrary to the device

fragment that must contain a hosted service implementing the previous service class,

the rest being totally free (the device may for instance host other services unrelated

with dynamic deployment). Once declared, some initialization code must be added to

handle the implementation.static.dyndepl tag:

dpws_register_dyndepl_loader();

In order to make configuration modifications through the dynamic deployment service

persistent, some code must be added:

dpws_register_config_cbk(save_cbk);

This registers the following function called whenever the dynamic deployment service

modifies the configuration.

void save_cbk()

{

 int status;

 void * sun_stream;

 sun_stream = sun_write_init(NULL, DPWS_CONFIG_DEFAULT_ID, NULL);

 if (!sun_stream)

 fprintf(stderr, "Could not open configuration file for

saving.\n");

 status = dpws_sun_save_config(&conf_dpws, sun_stream, DC_FALSE);

 if (status)

 fprintf(stderr, "Could not save DPWS registry

(err:%d).\n", status);

}

You can notice that the configuration backup is done here without incrementing the

boot sequence.

Warning: The dynamic deployment feature is incompatible with manual configuration

since the dedicated service considers it is the only one to modify registry contents.

Performing concurrent configuration operations may lead to unexpected behavior.

COMPIL ING AND L INKING

In addition to the core stack libraries, the server dynamic deployment feature requires:

 Shared libraries Static libraries

Root name dcxml, dcwsman,
dcdyndepl

xmltools, xmlconf,wsman,dyndepl

Linux name libdcxml.so, libdcwsman.so,
libdcdyndepl.so

libxmltools.a, libxmlconf.a,
libwsman.a, libdyndepl.a

Windows name dcxml.dll, dcwsman.dll,
dcdyndepl.dll

xmltoolslib.lib, xmlconflib.lib,
wsmanlib.lib, dyndepllib.lib

It is also necessary to include the dc/dc_XMLConfiguration.h, dc/dc_Sun.h and

dc/dc_DynDepl.h headers file in the application code.

DPWS Core 2.1 User Guide Page 79

CL IENT-SIDE SUPPORT

A helper is supplied for dynamic deployment client development, which simply

encapsulates the generic stub, providing one function for every {resource/fragment,

operation} couple. This allows:

 Limiting invocations to the one authorized (as specified earlier in the table),

 Hiding most WS-Management stuff (headers, actions).

For instance, the following function creates a hosted service on a remote device:

int dyndepl_create_service(

 struct dpws *dpws,

 short href_dyndepl_service_proxy,

 char * device_uuid,

 serialize_cbk request_cbk,

 parser_cbk response_cbk,

 void * user_data

);

Note about the parameters:

 Every API expects the WS-Management service proxy to be supplied

(href_dyndepl_service_proxy) which means that the user must perform the

discovery of the service first using standard toolkit features,

 The service having a composite ID (selector using WS-Management terminology)

made of the hosting device UUID and the service ID, the first must be supplied

when the second will be part of the sent XML fragment that describes the new

service,

 EPX callbacks will be required for create & put request bodies to produce the

event stream for resource description,

 EPX callbacks will be required for handling get, create & put response bodies.

Note that both create & put may return, like get, the resource description if it

differs from the request. The create response will also contain the EPR that will be

usable for subsequent WS-Management operations (containing especially WS-

Management reference parameters):

<s:Body ...>

 <wxf:ResourceCreated>endpoint-reference</wxf:ResourceCreated>

 xs:any

</s:Body>

The create response ResourceCreated tag is not encapsulated in the APIs so its parsing

should be done using the user EPX callback.

Other useful information:

Note that some other helpers allow to stream EPX into or from a file (see

xml_file_serialize and xml_file_parse reference) which may be useful

when processing message bodies.

COMPIL ING AND L INKING

In addition to the core stack libraries, the client dynamic deploiement feature requires:

 Shared libraries Static libraries

Root name dcxml, ddclient xmltools, ddclient

Linux name libdcxml.so, libddclient.so libxmltools.a, libdyndepl_client.a

Windows name dcxml.dll, ddclient.dll xmltoolslib.lib, ddclientlib.lib

DPWS Core 2.1 User Guide Page 80

It is also necessary to include the dc/dc_DynDeplClient.h header file in the

application code.

MULTIPLE NETWORK INTERFACES AND IP PROTOCOLS
The DPWSCore toolkit is able to manage multiple network interfaces using either IPv4

or IPv6. This means especially for WS-Discovery that:

 multicast packets may have to be sent on every interface and for every version of

the protocol.

 multicast packets server reception will detect the reception interface. This allows

refining responses so that only addresses for the reception interface can be

published.

Note :

The reception interface detection may require only one socket or one socket by

interface depending on the platform capabilities. However, IPv4 and IPv6 will always

use distinct sockets.

For HTTP messages, such considerations do not exist except that a socket is created for

each version of the IP protocol.

Practically, the user only has to initialize the stack using one of the dpws_init

functions, the rest being managed by the DPWS stack. Let‟s consider the extensive

version of the API:

int dpws_init_ex(

 dc_ip_filter_t * selector,

 const char * hostname,

 int versions

);

The following parameters are not strictly related to network interfaces:

 hostname, allows to force using a DNS name instead of IP addresses in published

URLs,

 versions, is a bit flag that allow to select the [DPWS] version supported.

The only currently supported version can be selected using DPWS_DEFAULT_VERSION

(or DPWS10_VERSION). For your information, DPWS11_VERSION is experimental

and corresponds to the ongoing normalization process at OASIS.

The selection of the protocol & network interfaces is made through the selector

parameter, which is in fact an IP address selector since:

 network interfaces may have several IP addresses,

 only IP addresses matter on most socket operations, because of IP protocol, but

also in [DPWS] messages, network interfaces being local technical routing entities.

The chosen approach is to retain addresses that match the supplied filter. The IP

address filter format is:

struct dc_ip_filter {

 dc_netif_filter_t * netif;

 DC_BOOL include_loopback;

 int proto;

 int nb_addrs;

 char ** addrs;

};

DPWS Core 2.1 User Guide Page 81

 netif is a network filter that only accepts IP address attached to a given network

interface based on either:

 the MAC address (recommended),

 the index, which is defined for IPv6 and may not be significant on IPv4-only

platform,

 the name which is dependent on the platform, usable for instance on Linux

(eth0, …) but not obvious on Windows.

 include_loopback is an additional filter that will select or not loopback addresses

(127.0.0.1 et ::1),

 proto selects IP addresses based on the protocol version,

 if the previous criteria are inadequate, a list of IP addresses can be specified

using the nb_addrs and addrs parameters.

ADVANCED STACK CUSTOMIZATION
The DC toolkit provides several advanced features available through customization of

the Web Services stack. These features include:

 Operation timeouts: this feature allows a client or server to limit the time during

which a blocking operation may hang.

 Connection keep-alive: this feature allows a client to reuse a connection when

sending several messages to a server. Connection keep-alive must be supported

both on the client and the server to work properly.

 HTTP chunked transfer encoding: this feature allows a HTTP client or server to

stream a request or a response without knowing its precise length beforehand. It is

only useful for keep-alive connections.

 MTOM support: this feature allows a client or server to use the standard Message

Transmission Optimization Mechanism to transfer large binary content.

OPERATION T IMEOUTS

Web Services use HTTP as their main transport layer, itself built on top of TCP. This

means that operations such as connecting to a server, sending or receiving data may

take time and are by default subject to the standard TCP delays. The DC runtime

provides timeouts to control those delays. The following four fields provided by the

struct soap defined inside a struct dpws object may be used:

 dpws.soap.accept_timeout: this field can be used on the server side to limit

the time during which the server will wait for an incoming connection request.

When used, the dpws_accept or dpws_accept_thr functions will return with a

timeout error upon expiration of the delay.

 dpws.soap.recv_timeout: this field can be used on both the server and the

client side to limit the time during which the application will wait for incoming data

on an existing connection.

 dpws.soap.send_timeout: this field can be used on both the server and the

client side to limit the time during which the application will wait for outgoing data

to be sent on an existing connection.

 dpws.soap.connect_timeout: this field can be used on the client side to limit

the time during which the application will wait for a new connection to be

established with the requested server.

Timeout values are integer values which can be either positive, in which case they are

interpreted as the duration of the timeout in seconds, or negative, in which case they

are interpreted as the opposite of the duration of the timeout in microseconds. Null

values are interpreted as infinite timeouts. For instance:

DPWS Core 2.1 User Guide Page 82

dpws.soap.connect_timeout = 3; // 3 seconds

dpws.soap.recv_timeout = -200000; // 200 milliseconds

dpws.soap.send_timeout = 0; // No timeout

On the server side, timeouts can be set on the struct dpws object initialized with

dpws_server_init, in which case they are automatically copied to the request-

specific object when it is initialized (in the dpws_accept_thr function), or, in the case

of receive or send timeouts, directly on the request-specific object before calling

dpws_serve.

On the client side, timeouts must be set on the struct dpws object representing the

client request context before a generated or generic stub is called. Note that the

timeouts are not reset by a call to the dpws_end function.

CONNECTION KEEP-ALIVE

Connection keep-alive is a standard feature of HTTP 1.1, and as such may be

expected by most HTTP clients. Connection keep-alive is however subject to

negotiation, so a server is not required to accept client requests for keep-alive

connections.

The use of connection keep-alive is strongly recommended when a client expects to

send a large number of messages to the same server, as it improves performances and

reduces the number of sockets that are left in TIME_WAIT state. It can also be useful

when a device sends high-frequency event notifications to one or several subscribers

(note that this use case is still considered as client-side connection keep-alive, even if it

occurs on a device).

SERVER -S IDE

On the server side, connection keep-alive works by instructing the dpws_serve

function not to return after processing a request, but rather to keep waiting for new

requests on the same connection until a given number of requests have been processed

or an error occurred. The dpws_serve function may therefore not return for a

considerable amount of time when this feature is used.

The connection keep-alive feature is activated on the server side as follows:

dpws.soap.imode |= SOAP_IO_KEEPALIVE;

dpws.soap.omode |= SOAP_IO_KEEPALIVE;

dpws.soap.max_keep_alive = 100;

In the above example the max_keep_alive field is used to control the maximum

number of requests (in this case 100) that will be processed before the dpws_serve

returns. The above values may be set either on the struct dpws object initialized

with dpws_server_init, in which case they are automatically copied to the request-

specific object when it is initialized (in the dpws_accept_thr function), or directly on

the request-specific object before calling dpws_serve.

Warning:

The connection keep-alive feature should always be used on the server in conjunction

with a multithreaded architecture, as otherwise the server would not be able to

respond to UDP messages or new HTTP connection requests.

It is also advisable to use a receive timeout in conjunction with server-side connection

keep-alive, to allow the dpws_serve function to return after the specified inactivity

delay, and thus avoid being blocked by an inactive client.

DPWS Core 2.1 User Guide Page 83

CL IENT -S IDE

On the client side, connection keep-alive is based on the use of a connection pool. The

connection pool keeps open a number of TCP connections for reuse. A maximum

number of active connections, along with a maximum idle time before a connection is

closed, can be used to configure the connection pool. The DC toolkit provides three

functions to manage and use the connection pool:

 dpws_use_connection_pool: this function sets a flag to configure a client

request context for using or not using a connection pool. When the flag is on, all

subsequent requests using the configured request context will use the connection

pool, until the flag is turned off by a second call to this function.

 dpws_init_connection_pool: this function initializes the connection pool with

the specified maximum number of connections and maximum idle time. The use of

this function is optional, as the pool is initialized with 10 connections and a 10

second maximum idle time by default.

 dpws_shutdown_connection_pool: this function closes all connections in the

pool.

COMPIL ING AND L INKING

Connection keep-alive does not require specific libraries to be used, beyond the

standard DC libraries. It is however necessary to include the dc/dc_ConnPool.h

header file in the client code to use the connection pool API.

HTTP CHUNKED MODE

The chunked transfer encoding is a required feature of HTTP 1.1. Unlike connection

keep-alive, it is not subject to negotiation between client and server. Chunked mode is

useful when using connection keep-alive as an alternative to the explicit computation of

a request or response content length: when using chunked mode, the HTTP message

content is sent in chunks prefixed with their length. This allows the sender to use buffers

of reasonable size to stream large content without having to compute its length

beforehand.

Chunked mode is activated as follows:

dpws.soap.omode |= SOAP_IO_CHUNK;

On the server side, this flag may be set either on the struct dpws object initialized

with dpws_server_init, in which case it is automatically copied to the request-

specific object when it is initialized (in the dpws_accept_thr function), or directly on

the request-specific object before calling dpws_serve. The flag controls the transfer

encoding of the response.

On the client side, this flag may be set on the struct dpws object representing the

client request context before a generated or generic stub is called. The flag controls

the transfer encoding of the request and is not reset after a call to dpws_end.

MTOM SUPPORT

MTOM is a mechanism used to transform a SOAP message containing elements holding

base64-encoded binary data, into a MIME Multipart/Related message, in which the

first part contains the transformed SOAP message where the binary contents have

been replaced by xop:include placeholders, and the following parts contain the

removed binary contents.

The DC toolkit provides support for MTOM, through two complementary mechanisms:

DPWS Core 2.1 User Guide Page 84

 The code generation must be configured to produce MTOM-compatible C structs

and marshalling/unmarshalling code.

 The DC runtime must be configured to send and receive SOAP messages using

MTOM.

The first step can be performed by customizing the wsdl2h code generation tool as

explained in a previous section. The following line must be added to the type

definitions section of the typemap.dat file:

xsd__binary = #import "xop.h" | _xop__Include | _xop__Include *

This line instructs the wsdl2h tool to generate a _xop__Include type everywhere a

XSD binary type is used in XML elements.

The second step can be performed by setting the MTOM support flag in the request

context used to send and receive the MTOM messages:

dpws.soap.imode |= SOAP_ENC_MTOM;

dpws.soap.omode |= SOAP_ENC_MTOM;

On the server side, this flag may be set either on the struct dpws object initialized

with dpws_server_init, in which case it is automatically copied to the request-

specific object when it is initialized (in the dpws_accept_thr function), or directly on

the request-specific object before calling dpws_serve.

On the client side, this flag may be set on the struct dpws object representing the

client request context before a generated or generic stub is called.

More details on the support of MTOM can be found in the gSOAP User Manual, § 16.

BASIC PROFILE 1.1 SUPPORT
The DPWS specification requires hosted services to use SOAP 1.2 and WS-Addressing.

However, in some cases, to increase interoperability with existing Web services, it is

useful to support the Basic Profile 1.1 (an ISO standard), both on the server and on the

client side. Basic Profile 1.1 requires the use of SOAP 1.1 and does not support WS-

Addressing.

In order to support services using a dual DPWS/BP 1.1 mode, both the code

generation and the DC runtime must be configured in a specific way. In addition, the

WSDL document describing the services must be compliant with the BP 1.1

requirements.

The wsdl2h code generator relies on the SOAP binding namespace present in the

WSDL document to decide which version of SOAP to support in the generated code:

 When the SOAP 1.2 binding namespace is declared in a WSDL document, the use

of the SOAP 1.2 binding is forced (even if the actual binding uses the SOAP 1.1

binding).

 When only the SOAP 1.1 binding namespace is declared and used in the WSDL

document, the generated gSOAP annotated header file will allow the setup of

servers that support both DPWS and BP 1.1 modes, and the setup of clients

running in BP 1.1 mode on top of the DPWS stack.

The soapcpp2 code generator must be executed on the resulting gSOAP annotated

header file to produce the generated C files:

 If the „-2‟ option is used on the command line, the generated C code will only

support SOAP 1.2, regardless of the input.

DPWS Core 2.1 User Guide Page 85

 If the „-2‟ is not used, and the SOAP1.1 binding has been used in the WSDL file,

then the generated C code will allow the setup of servers that support both DPWS

and BP 1.1 modes, and the setup of clients running in BP 1.1 mode on top of the

DPWS stack.

On the server side, in order to be compatible with both BP 1.1 and DPWS clients, it is

also necessary to set the DPWS_BOOL_BP1_1_COMPATIBILITY attribute on the

DC_TOOLKIT_HANDLE pseudo-object. This is required to turn off the mandatory use

of WS-Addressing headers.

DPWS_SET_BOOL_ATT(DC_TOOLKIT_HANDLE, DPWS_BOOL_BP1_1_COMPATIBILITY,

 DC_TRUE);

On the client side, it is also necessary to clear a flag to turn off the sending of WS-

Addressing headers, as follows:

dpws.soap.imode &= ~DPWS_HEADERS;

dpws.soap.omode &= ~DPWS_HEADERS;

This flag must be cleared on the struct dpws object representing the client request

context before a generated or generic stub is called. Note that this flag must be set

back on the same object before calling DC toolkit built-in functions, as WS-Discovery,

WS-Transfer and WS-Eventing require the use of WS-Addressing headers.

dpws.soap.imode |= DPWS_HEADERS;

dpws.soap.omode |= DPWS_HEADERS;

HTTP GET SUPPORT
The DC toolkit provides limited support for handling HTTP GET requests. Although the

DC runtime normally only handles HTTP POST requests, it is possible to define a

callback function that will be called when a HTTP GET request is received. This

callback must be set as follows:

dpws.soap.fget = get_callback;

On the server side, this callback should be set on the struct dpws object initialized

with dpws_server_init.

The callback function takes a pointer to a struct soap object as parameter. This

object is the one embedded in the request context used to process the incoming HTTP

request. A simple implementation of a HTTP GET callback function is shown below:

int get_callback(struct soap* soap)

{

 char* context_path = strchr(soap->path, '/');

 // The struct dpws object associated to the request

 struct dpws * dpws = dpws_soap2dpws(soap);

 // HTTP response header with text/html

 dpws_response(dpws, SOAP_HTML);

 soap_send(soap, "<html><head><title>");

 soap_send(soap, "DC Hello page");

 soap_send(soap, "</title></head><body>Hello world</body></html>");

 return DPWS_OK;

}

The dpws_response and soap_send functions are part of the DC runtime internal

API used by generated code. As such, they are not documented in the public API.

A more complex example of HTTP GET callback function is available in the DC toolkit

source code (dpws_http_get in dcDPWS_Dpws.c). Note however that that

implementation uses a lot of internal functions and should not directly be copied.

DPWS Core 2.1 User Guide Page 86

ADVANCED EVENTING FEATURES
The DC toolkit provides several mechanisms to manage subscriptions on the server side:

 Configuration of the maximum number of subscriptions and of their maximum

duration.

 Detection of event notification failures and removal of “dead” subscriptions.

SUBSCRIPT ION MANAGEMENT CONFIGURATION

The DC toolkit provides a few attributes that can be used to globally control the

number and duration of subscriptions:

 DPWS_INT_MAX_SUBSC_NB: this attribute represents the maximum number of

subscriptions that can be globally managed at any given time. It defaults to a

very large value. When the number of active subscriptions exceeds this value, new

subscription requests are rejected until older subscriptions are cancelled.

 DPWS_STR_MAX_SUBSC_DURATION: the maximum allowed duration for

subscriptions, specified as a string compliant with the XML Schema duration type.

It defaults to "P1D" (one day). This value is internally converted into a number of

seconds.

 DPWS_INT_MAX_SUBSC_DURATION: the maximum allowed duration for

subscriptions, specified in seconds. It defaults to 86400 seconds (one day).

Subscription requests that use expiration durations greater than the maximum

allowed duration are only granted this maximum duration.

These three attributes can be set by the generic DC attribute setters applied to the

DC_SUBSC_MANAGER_HANDLE pseudo-object, as shown below:

DPWS_SET_INT_ATT(DC_SUBSC_MANAGER_HANDLE, DPWS_INT_MAX_SUBSC_NB, 100);

DPWS_SET_INT_ATT(DC_SUBSC_MANAGER_HANDLE, DPWS_INT_MAX_SUBSC_DURATION,

 3600);

MONITORING EVENT DEL IVERY FAILURES

A typical problem when using event notifications occurs when subscribers disappear

without cancelling their subscriptions, due either to bad programming practices or to

network or system failures. This leads to event notification failures, which can block the

sending process for quite a long time: typical TCP connection timeouts can be up to two

minutes and TCP detection of a missing peer when the connection is already

established can take up to ten minutes. In addition, due to the use of a sequential

algorithm to send event notifications to subscribers, failure to reach one subscriber will

delay the delivery to all the following ones.

Several mechanisms are provided by the DC toolkit to alleviate this problem:

 Connect, send and receive timeouts can be set on the client request context before

sending event notifications, thus limiting the delays induced by notification failures.

 A callback function can be set on the client request context before sending event

notifications and be called by the runtime when a notification failure occurs.

The callback function is set on the client request context as follows:

dpws.fnotification_failure = notif_failed;

The callback takes as parameters the client request context, the handle reference for

the event source and the endpoint reference responsible for the delivery failure. A

typical implementation of such a callback function is shown below:

void notif_failed(struct dpws * dpws, short event_source,

file:///C:\dev\dpwscore-2.1.0\doc\api\dc___dpws_8h.html%2341d28abcd02cd7d2f7d68820bb7995fa
file:///C:\dev\dpwscore-2.1.0\doc\api\dc___dpws_8h.html%23759da46e48e6300201d279b9affda131
file:///C:\dev\dpwscore-2.1.0\doc\api\dc___dpws_8h.html%23759da46e48e6300201d279b9affda131

DPWS Core 2.1 User Guide Page 87

 struct wsa_endpoint_ref * sink)

{

 // App specific code used to check if the subscription should be

 // really removed (e.g. a counter of failures)

 dpws_remove_subscriber(event_source, sink);

}

The dpws_remove_subscriber function is an API function that can be used by the

server to remove all subscriptions for a given event source and endpoint reference (it is

assumed that if an endpoint reference is not reachable for one subscription, it will not

be reachable for others).

EXTERNAL WEB SERVER INTEGRATION
Although the DC toolkit provides an internal Web server, it sometimes required to

integrate the DC Web Services stack with an existing Web server. This integration has

two main impacts:

 The configuration of the device server architecture is modified, to allow the setup

of the external Web server in parallel with the DC discovery listener.

 The external Web server request processing must be implemented in a way that

allow incoming HTTP requests containing SOAP messages to be processed by the

DC runtime.

SERVER CONFIGURATION

The default server configuration of the DC runtime uses an integrated listener that can

multiplex both incoming UDP and HTTP requests. Only a single thread is required to

operate this listener, thus giving complete control of the application thread architecture

to the developer.

When integrating an external Web server, it is usually not possible to have a single

listener for both HTTP and UDP requests, as Web servers provide their own listener

mechanisms that are generally not extensible with additional input channels.

It is therefore necessary to use a multithreaded architecture to configure and start the

DC runtime environment with an external Web server:

 The DC server is configured to only start the UDP listener. This is achieved by

calling the dpws_server_init_ex function with DC_LISTENER_UDP as listeners

parameter. The usual server loop based on the dpws_accept and dpws_serve

functions can then be used to process incoming UDP requests. This loop requires at

least one thread to be executed.

 The external Web server must be configured and started using its specific

configuration API. Depending on its implementation, the Web server execution

loop may require one or several threads.

External
HTTP server

Integrated
listener

HTTP
request

UDP
request

XML/SOAP processing

HTTP
listener

HTTP
request

UDP
request

XML/SOAP processing

UDP
listener

DPWS Core 2.1 User Guide Page 88

Even when using an external Web server, it remains necessary to configure the HTTP

server port, and optionally its address, in the DC registry, as the server HTTP URL is

used to generate the devices and hosted services transport addresses that appear in

the DPWS metadata.

HTTP REQUEST PROCESSING

As a prerequisite, the external Web server must provide a mechanism allowing the

developer to gain control of the request processing, including an API that provides

access to the HTTP request and response headers and body.

The DC toolkit provides an API function (dpws_dispatch_request) that can be

called to process (dispatch) a single SOAP request. In this approach:

 The Web server is responsible for all the HTTP request management: connection

keep-alive, transfer encoding (chunked mode) and message buffering and

delimitation.

 The DC SOAP engine controls the flow of data, i.e. pulls request data from and

pushes response data to the HTTP layer. Access to the HTTP layer is done through

a set of callback functions, dependant on the external Web server API, which must

be provided by the application developer.

The following figure shows the three callback functions that must be provided:

 Read: this callback is used by the DC SOAP engine to read request data.

 Response: this callback is used by the DC SOAP engine to notify the HTTP layer

that it is about to start sending the response.

 Write: this callback is used by the DC SOAP engine to write response data.

The dpws_dispatch_request function takes the following parameters:

 dpws: A pointer to a struct dpws object representing the server request

context. This object must be allocated and initialized (using the dpws_client_init

function) by the application developer for each request.

 transport_data: An opaque pointer (void *) representing the Web server-

specific HTTP request. This pointer will be passed back as context to the three

callback functions.

 fns: a pointer to a struct containing the three callback functions.

 host: the HTTP server host name, as found in the “Host” HTTP header.

 path: the request URL, as found in the HTTP request line.

External Web server

HTTP request

XML / SOAP processing

Request
listener

HTTP
request

create
request

dispatch
request

writeread response

free
request

DPWS Core 2.1 User Guide Page 89

 mtype: the request content type, built from the “Content-Type” HTTP header. It is

represented by a pointer to a struct media_type object, which must be

initialized and filled by the application developer.

 action: the contents of the optional "SOAPAction" HTTP header. It is currently not

used.

 needs_length: a Boolean indicating to the SOAP processor that it must provide the

response length.

The function returns 0 on success, an error code otherwise. Errors can include

recoverable errors, such as a SOAP processing error that returns a SOAP fault to the

client, and non-recoverable errors, such as transport errors.

The three callback functions take the same two first parameters:

 A pointer to a struct dpws object representing the server request context, as

passed to the dpws_dispatch_request function.

 An opaque pointer (void *) representing the Web server-specific HTTP request,

as passed to the dpws_dispatch_request function.

The read and write callback functions take as additional parameters a character

buffer and its length, to be used for receiving or sending the request and response

content. They return the number of characters received or sent, or -1 when an error

occurred.

The response callback function takes as additional parameters:

 status: an integer representing the SOAP response status, i.e. one of

DC_SOAP_RESPONSE, DC_SOAP_EMPTY_RESPONSE, DC_SOAP_SENDER_FAULT

or DC_SOAP_RECEIVER_FAULT. This status should be used to generate the

appropriate HTTP status code (200, 202, 400 and 500 respectively).

 mtype: a pointer to a struct media_type object, representing the content type

of the response. The content of this object can be used by the developer to build

the “Content-Type” HTTP header of the response.

 len: the length of the response, or 0 if unknown. It should have a positive value if

the needs_length parameter has been specified in the

dpws_dispatch_request function. This value can be used to build the

“Content-Length” HTTP header of the response.

COMPIL ING AND L INKING

The external Web server integration feature does not require specific libraries to be

used, beyond the standard DC libraries. It is however necessary to include the

dc/dc_DpwsRequest.h header file in the code providing the “glue” between the

Web server and the DC runtime.

DPWS Core 2.1 User Guide Page 90

APPENDICES

ERROR MANAGEMENT
Most DPWSCore API functions return an error code or make it accessible through a

dpws_get_error call on the dpws runtime structure. All components use the same

error space with non-overlapping ranges, for instance:

 gSOAP use positive error codes,

 API errors use negative values (from 0 to -200),

 XML configuration / dynamic deployment errors use another range of negative

values (from -200 to -300),

 XML parsing error use positive errors that do not collide with gSOAP error codes

(from 100 to 200).

An error message can be retrieved using dpws_get_error_msg especially in case of

gSOAP error since most API errors don‟t have built-in messages.

Other error code, for built-in WS-Addressing & WS-Eventing faults (negative values <

-1000) may be raised automatically by the stack and won‟t be seen as API error

codes but as faults (SOAP_FAULT) by a client. However, a user service implementation

may use these codes to return automatically a built-in fault (e.g. a WS-Management

implementation).

